Vortical Effects for Free Fermions on Anti-De Sitter Space-Time
Here, we study a quantum fermion field in rigid rotation at finite temperature on anti-de Sitter space. We assume that the rotation rate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></seman...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0bd05d8aef64465b99f65f649eb0521d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0bd05d8aef64465b99f65f649eb0521d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0bd05d8aef64465b99f65f649eb0521d2021-11-25T19:06:05ZVortical Effects for Free Fermions on Anti-De Sitter Space-Time10.3390/sym131120192073-8994https://doaj.org/article/0bd05d8aef64465b99f65f649eb0521d2021-10-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2019https://doaj.org/toc/2073-8994Here, we study a quantum fermion field in rigid rotation at finite temperature on anti-de Sitter space. We assume that the rotation rate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> is smaller than the inverse radius of curvature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mo>ℓ</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, so that there is no speed of light surface and the static (maximally-symmetric) and rotating vacua coincide. This assumption enables us to follow a geometric approach employing a closed-form expression for the vacuum two-point function, which can then be used to compute thermal expectation values (t.e.v.s). In the high temperature regime, we find a perfect analogy with known results on Minkowski space-time, uncovering curvature effects in the form of extra terms involving the Ricci scalar <i>R</i>. The axial vortical effect is validated and the axial flux through two-dimensional slices is found to escape to infinity for massless fermions, while for massive fermions, it is completely converted into the pseudoscalar density <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mi>i</mi><mover accent="true"><mo>ψ</mo><mo>¯</mo></mover><msup><mo>γ</mo><mn>5</mn></msup><mo>ψ</mo></mrow></semantics></math></inline-formula>. Finally, we discuss volumetric properties such as the total scalar condensate and the total energy within the space-time and show that they diverge as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo>[</mo><mn>1</mn><mo>−</mo><msup><mo>ℓ</mo><mn>2</mn></msup><msup><mo>Ω</mo><mn>2</mn></msup><mo>]</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> in the limit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo><mo>→</mo><msup><mo>ℓ</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>.Victor E. AmbrusElizabeth WinstanleyMDPI AGarticleanti-de Sitter spacedirac fermionsfinite temperature field theoryrigid rotationchiral vortical effectMathematicsQA1-939ENSymmetry, Vol 13, Iss 2019, p 2019 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
anti-de Sitter space dirac fermions finite temperature field theory rigid rotation chiral vortical effect Mathematics QA1-939 |
spellingShingle |
anti-de Sitter space dirac fermions finite temperature field theory rigid rotation chiral vortical effect Mathematics QA1-939 Victor E. Ambrus Elizabeth Winstanley Vortical Effects for Free Fermions on Anti-De Sitter Space-Time |
description |
Here, we study a quantum fermion field in rigid rotation at finite temperature on anti-de Sitter space. We assume that the rotation rate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> is smaller than the inverse radius of curvature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mo>ℓ</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, so that there is no speed of light surface and the static (maximally-symmetric) and rotating vacua coincide. This assumption enables us to follow a geometric approach employing a closed-form expression for the vacuum two-point function, which can then be used to compute thermal expectation values (t.e.v.s). In the high temperature regime, we find a perfect analogy with known results on Minkowski space-time, uncovering curvature effects in the form of extra terms involving the Ricci scalar <i>R</i>. The axial vortical effect is validated and the axial flux through two-dimensional slices is found to escape to infinity for massless fermions, while for massive fermions, it is completely converted into the pseudoscalar density <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><mi>i</mi><mover accent="true"><mo>ψ</mo><mo>¯</mo></mover><msup><mo>γ</mo><mn>5</mn></msup><mo>ψ</mo></mrow></semantics></math></inline-formula>. Finally, we discuss volumetric properties such as the total scalar condensate and the total energy within the space-time and show that they diverge as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo>[</mo><mn>1</mn><mo>−</mo><msup><mo>ℓ</mo><mn>2</mn></msup><msup><mo>Ω</mo><mn>2</mn></msup><mo>]</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> in the limit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ω</mo><mo>→</mo><msup><mo>ℓ</mo><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>. |
format |
article |
author |
Victor E. Ambrus Elizabeth Winstanley |
author_facet |
Victor E. Ambrus Elizabeth Winstanley |
author_sort |
Victor E. Ambrus |
title |
Vortical Effects for Free Fermions on Anti-De Sitter Space-Time |
title_short |
Vortical Effects for Free Fermions on Anti-De Sitter Space-Time |
title_full |
Vortical Effects for Free Fermions on Anti-De Sitter Space-Time |
title_fullStr |
Vortical Effects for Free Fermions on Anti-De Sitter Space-Time |
title_full_unstemmed |
Vortical Effects for Free Fermions on Anti-De Sitter Space-Time |
title_sort |
vortical effects for free fermions on anti-de sitter space-time |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/0bd05d8aef64465b99f65f649eb0521d |
work_keys_str_mv |
AT victoreambrus vorticaleffectsforfreefermionsonantidesitterspacetime AT elizabethwinstanley vorticaleffectsforfreefermionsonantidesitterspacetime |
_version_ |
1718410259005964288 |