Optical transient grating pumped X-ray diffraction microscopy for studying mesoscale structural dynamics

Abstract A fundamental understanding of materials’ structural dynamics, with fine spatial and temporal control, underpins future developments in electronic and quantum materials. Here, we introduce an optical transient grating pump and focused X-ray diffraction probe technique (TGXD) to examine the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Travis D. Frazer, Yi Zhu, Zhonghou Cai, Donald A. Walko, Carolina Adamo, Darrell G. Schlom, Eric E. Fullerton, Paul G. Evans, Stephan O. Hruszkewycz, Yue Cao, Haidan Wen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0bd3e8a68eb947729bfb3756b63d40a0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0bd3e8a68eb947729bfb3756b63d40a0
record_format dspace
spelling oai:doaj.org-article:0bd3e8a68eb947729bfb3756b63d40a02021-12-02T17:18:20ZOptical transient grating pumped X-ray diffraction microscopy for studying mesoscale structural dynamics10.1038/s41598-021-98741-y2045-2322https://doaj.org/article/0bd3e8a68eb947729bfb3756b63d40a02021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98741-yhttps://doaj.org/toc/2045-2322Abstract A fundamental understanding of materials’ structural dynamics, with fine spatial and temporal control, underpins future developments in electronic and quantum materials. Here, we introduce an optical transient grating pump and focused X-ray diffraction probe technique (TGXD) to examine the structural evolution of materials excited by modulated light with a precisely controlled spatial profile. This method adds spatial resolution and direct structural sensitivity to the established utility of a sinusoidal transient-grating excitation. We demonstrate TGXD using two thin-film samples: epitaxial BiFeO3, which exhibits a photoinduced strain (structural grating) with an amplitude proportional to the optical fluence, and FeRh, which undergoes a magnetostructural phase transformation. In BiFeO3, structural relaxation is location independent, and the strain persists on the order of microseconds, consistent with the optical excitation of long-lived charge carriers. The strain profile of the structural grating in FeRh, in comparison, deviates from the sinusoidal excitation and exhibits both higher-order spatial frequencies and a location-dependent relaxation. The focused X-ray probe provides spatial resolution within the engineered optical excitation profile, resolving the spatiotemporal flow of heat through FeRh locally heated above the phase transition temperature. TGXD successfully characterizes mesoscopic energy transport in functional materials without relying on a specific transport model.Travis D. FrazerYi ZhuZhonghou CaiDonald A. WalkoCarolina AdamoDarrell G. SchlomEric E. FullertonPaul G. EvansStephan O. HruszkewyczYue CaoHaidan WenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Travis D. Frazer
Yi Zhu
Zhonghou Cai
Donald A. Walko
Carolina Adamo
Darrell G. Schlom
Eric E. Fullerton
Paul G. Evans
Stephan O. Hruszkewycz
Yue Cao
Haidan Wen
Optical transient grating pumped X-ray diffraction microscopy for studying mesoscale structural dynamics
description Abstract A fundamental understanding of materials’ structural dynamics, with fine spatial and temporal control, underpins future developments in electronic and quantum materials. Here, we introduce an optical transient grating pump and focused X-ray diffraction probe technique (TGXD) to examine the structural evolution of materials excited by modulated light with a precisely controlled spatial profile. This method adds spatial resolution and direct structural sensitivity to the established utility of a sinusoidal transient-grating excitation. We demonstrate TGXD using two thin-film samples: epitaxial BiFeO3, which exhibits a photoinduced strain (structural grating) with an amplitude proportional to the optical fluence, and FeRh, which undergoes a magnetostructural phase transformation. In BiFeO3, structural relaxation is location independent, and the strain persists on the order of microseconds, consistent with the optical excitation of long-lived charge carriers. The strain profile of the structural grating in FeRh, in comparison, deviates from the sinusoidal excitation and exhibits both higher-order spatial frequencies and a location-dependent relaxation. The focused X-ray probe provides spatial resolution within the engineered optical excitation profile, resolving the spatiotemporal flow of heat through FeRh locally heated above the phase transition temperature. TGXD successfully characterizes mesoscopic energy transport in functional materials without relying on a specific transport model.
format article
author Travis D. Frazer
Yi Zhu
Zhonghou Cai
Donald A. Walko
Carolina Adamo
Darrell G. Schlom
Eric E. Fullerton
Paul G. Evans
Stephan O. Hruszkewycz
Yue Cao
Haidan Wen
author_facet Travis D. Frazer
Yi Zhu
Zhonghou Cai
Donald A. Walko
Carolina Adamo
Darrell G. Schlom
Eric E. Fullerton
Paul G. Evans
Stephan O. Hruszkewycz
Yue Cao
Haidan Wen
author_sort Travis D. Frazer
title Optical transient grating pumped X-ray diffraction microscopy for studying mesoscale structural dynamics
title_short Optical transient grating pumped X-ray diffraction microscopy for studying mesoscale structural dynamics
title_full Optical transient grating pumped X-ray diffraction microscopy for studying mesoscale structural dynamics
title_fullStr Optical transient grating pumped X-ray diffraction microscopy for studying mesoscale structural dynamics
title_full_unstemmed Optical transient grating pumped X-ray diffraction microscopy for studying mesoscale structural dynamics
title_sort optical transient grating pumped x-ray diffraction microscopy for studying mesoscale structural dynamics
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0bd3e8a68eb947729bfb3756b63d40a0
work_keys_str_mv AT travisdfrazer opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
AT yizhu opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
AT zhonghoucai opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
AT donaldawalko opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
AT carolinaadamo opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
AT darrellgschlom opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
AT ericefullerton opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
AT paulgevans opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
AT stephanohruszkewycz opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
AT yuecao opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
AT haidanwen opticaltransientgratingpumpedxraydiffractionmicroscopyforstudyingmesoscalestructuraldynamics
_version_ 1718381126750306304