A platysomid occurrence from the Tournaisian of Nova Scotia
Abstract The Hangenberg extinction has been hypothesized as a first order event in vertebrate evolution; however, information on the earliest Carboniferous vertebrate fauna, crucial in evaluating biodiversity changes, is scarce. Post-extinction recovery has been suggested as the driver of ray-finned...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0bd89d51e84b497cbab30f4b10cd7eb1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The Hangenberg extinction has been hypothesized as a first order event in vertebrate evolution; however, information on the earliest Carboniferous vertebrate fauna, crucial in evaluating biodiversity changes, is scarce. Post-extinction recovery has been suggested as the driver of ray-finned fish (actinopterygian) richness increase and differentiation in the Carboniferous. Under this model, actinopterygian postcranial morphology differentiates in the second stage of their radiation. Here, we report on a platysomid occurrence from the Tournaisian of Nova Scotia, Canada. Despite long-standing taxonomic issues with deep-bodied actinopterygians, this specimen represents the earliest known occurrence of one such fish. Its presence in the earliest Carboniferous indicates that actinopterygians were already postcranially differentiated in the aftermath of the Hangenberg. Moreover, this specimen suggests that earliest Carboniferous actinopterygians used multiple locomotory modes; recent data from later Carboniferous taxa suggest that actinopterygian locomotory modes proliferated throughout the Carboniferous. Taken together, these data suggest that early Carboniferous actinopterygians were morphologically, ecologically, and functionally diverse. |
---|