A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database
We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on complete 3D MRI scans. Our approach detects the presence of meniscal tears in three anato...
Guardado en:
Autores principales: | Alexander Tack, Alexey Shestakov, David Lüdke, Stefan Zachow |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0bea2fc65095403d91d3f17e8fee91aa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explainable Artificial Intelligence for Human-Machine Interaction in Brain Tumor Localization
por: Morteza Esmaeili, et al.
Publicado: (2021) -
Biomechanics of the medial meniscus in the osteoarthritic knee joint
por: Karol Daszkiewicz, et al.
Publicado: (2021) -
PATIENT REPORTED OUTCOMES MEASUREMENT AFTER ARTHROSCOPIC PARTIAL MENISCECTOMY FOR CHRONIC MENISCAL TEARS
por: Asad Ullah Burki, et al.
Publicado: (2019) -
Breast Mass Classification Using Diverse Contextual Information and Convolutional Neural Network
por: Mariam Busaleh, et al.
Publicado: (2021) -
Feature-Based Interpretation of the Deep Neural Network
por: Eun-Hun Lee, et al.
Publicado: (2021)