A lattice model for influenza spreading.
We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement from a site to a nearest neighbor empty site, allows individua...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0beb2d58085d40f5b9a489a5fcba000e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0beb2d58085d40f5b9a489a5fcba000e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0beb2d58085d40f5b9a489a5fcba000e2021-11-18T07:44:38ZA lattice model for influenza spreading.1932-620310.1371/journal.pone.0063935https://doaj.org/article/0beb2d58085d40f5b9a489a5fcba000e2013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23717512/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement from a site to a nearest neighbor empty site, allows individuals to change the number and identities of their contacts. The dynamics on the lattice is governed by an attractive interaction between individuals belonging to the same age-class. The parameters, which regulate the pattern dynamics, are fixed fitting the data on the age-dependent daily contact numbers, furnished by the Polymod survey. A simple SIR transmission model with a nearest neighbors interaction and some very basic adaptive mobility restrictions complete the model. The model is validated against the age-distributed Italian epidemiological data for the influenza A(H1N1) during the [Formula: see text] season, with sensible predictions for the epidemiological parameters. For an appropriate topology of the lattice, we find that, whenever the accordance between the contact patterns of the model and the Polymod data is satisfactory, there is a good agreement between the numerical and the experimental epidemiological data. This result shows how rich is the information encoded in the average contact patterns of individuals, with respect to the analysis of the epidemic spreading of an infectious disease.Antonella LiccardoAnnalisa FierroPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 5, p e63935 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Antonella Liccardo Annalisa Fierro A lattice model for influenza spreading. |
description |
We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement from a site to a nearest neighbor empty site, allows individuals to change the number and identities of their contacts. The dynamics on the lattice is governed by an attractive interaction between individuals belonging to the same age-class. The parameters, which regulate the pattern dynamics, are fixed fitting the data on the age-dependent daily contact numbers, furnished by the Polymod survey. A simple SIR transmission model with a nearest neighbors interaction and some very basic adaptive mobility restrictions complete the model. The model is validated against the age-distributed Italian epidemiological data for the influenza A(H1N1) during the [Formula: see text] season, with sensible predictions for the epidemiological parameters. For an appropriate topology of the lattice, we find that, whenever the accordance between the contact patterns of the model and the Polymod data is satisfactory, there is a good agreement between the numerical and the experimental epidemiological data. This result shows how rich is the information encoded in the average contact patterns of individuals, with respect to the analysis of the epidemic spreading of an infectious disease. |
format |
article |
author |
Antonella Liccardo Annalisa Fierro |
author_facet |
Antonella Liccardo Annalisa Fierro |
author_sort |
Antonella Liccardo |
title |
A lattice model for influenza spreading. |
title_short |
A lattice model for influenza spreading. |
title_full |
A lattice model for influenza spreading. |
title_fullStr |
A lattice model for influenza spreading. |
title_full_unstemmed |
A lattice model for influenza spreading. |
title_sort |
lattice model for influenza spreading. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/0beb2d58085d40f5b9a489a5fcba000e |
work_keys_str_mv |
AT antonellaliccardo alatticemodelforinfluenzaspreading AT annalisafierro alatticemodelforinfluenzaspreading AT antonellaliccardo latticemodelforinfluenzaspreading AT annalisafierro latticemodelforinfluenzaspreading |
_version_ |
1718423016345436160 |