Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration

Han Guo,1,2 Jie Wei,2 Wenhua Song,2 Shan Zhang,2 Yonggang Yan,3 Changsheng Liu,2 Tiqiao Xiao11Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China; 2Key Laboratory for Ultrafine Materials of Mini...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guo H, Wei J, Song WH, Zhang S, Yan YG, Liu CS, Xiao TQ
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://doaj.org/article/0bf36885143d4788acddf98395a98910
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0bf36885143d4788acddf98395a98910
record_format dspace
spelling oai:doaj.org-article:0bf36885143d4788acddf98395a989102021-12-02T07:28:32ZWollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration1176-91141178-2013https://doaj.org/article/0bf36885143d4788acddf98395a989102012-07-01T00:00:00Zhttp://www.dovepress.com/wollastonite-nanofiberndashdoped-self-setting-calcium-phosphate-bioact-a10365https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Han Guo,1,2 Jie Wei,2 Wenhua Song,2 Shan Zhang,2 Yonggang Yan,3 Changsheng Liu,2 Tiqiao Xiao11Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China; 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; 3School of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of ChinaAbstract: The purpose of this study was to synthesize a self-setting bioactive cement by incorporation of wollastonite nanofibers (WNFs) into calcium phosphate cement (CPC). The composition, morphology, setting time, compressive strength, hydrophilicity, and degradation of WNF-doped CPC (wnf-CPC) were investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy were utilized. Additionally, methyl-thiazolyl-tetrazolium bromide assay, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and histological evaluation were used to study the cell and tissue responses to wnf-CPC, both in vitro and in vivo. The results confirmed that the addition of WNFs into CPC had no obvious effect on the setting time or the compressive strength of wnf-CPC, provided the WNF amount was not more than 10 wt%. However, the hydrophilicity and degradability of wnf-CPC were significantly improved by the addition of WNFs – this was because of the change of microstructure caused by the WNFs. The preferred dissolution of WNFs caused the formation of microporosity in wnf-CPC when soaked in tris hydrochloride solution. The microporosity enlarged the surface area of the wnf-CPC and so promoted degradation of the wnf-CPC when in contact with liquid. In addition, MG-63 cell attachment and proliferation on the wnf-CPC were superior to that on the CPC, indicating that incorporation of WNFs into CPC improved the biological properties for wnf-CPC. Following the implantation of wnf-CPC into bone defects of rabbits, histological evaluation showed that wnf-CPC enhanced the efficiency of new bone formation in comparison with CPC, indicating excellent biocompatibility and osteogenesis of wnf-CPC. In conclusion, wnf-CPC exhibited promising prospects in bone regeneration.Keywords: calcium phosphate cement, degradability, cell and tissue responses, biocompatibilityGuo HWei JSong WHZhang SYan YGLiu CSXiao TQDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 3613-3624 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Guo H
Wei J
Song WH
Zhang S
Yan YG
Liu CS
Xiao TQ
Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration
description Han Guo,1,2 Jie Wei,2 Wenhua Song,2 Shan Zhang,2 Yonggang Yan,3 Changsheng Liu,2 Tiqiao Xiao11Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People's Republic of China; 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China; 3School of Physical Science and Technology, Sichuan University, Chengdu, People's Republic of ChinaAbstract: The purpose of this study was to synthesize a self-setting bioactive cement by incorporation of wollastonite nanofibers (WNFs) into calcium phosphate cement (CPC). The composition, morphology, setting time, compressive strength, hydrophilicity, and degradation of WNF-doped CPC (wnf-CPC) were investigated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and inductively coupled plasma atomic emission spectroscopy were utilized. Additionally, methyl-thiazolyl-tetrazolium bromide assay, scanning electron microscopy, inductively coupled plasma atomic emission spectroscopy, and histological evaluation were used to study the cell and tissue responses to wnf-CPC, both in vitro and in vivo. The results confirmed that the addition of WNFs into CPC had no obvious effect on the setting time or the compressive strength of wnf-CPC, provided the WNF amount was not more than 10 wt%. However, the hydrophilicity and degradability of wnf-CPC were significantly improved by the addition of WNFs – this was because of the change of microstructure caused by the WNFs. The preferred dissolution of WNFs caused the formation of microporosity in wnf-CPC when soaked in tris hydrochloride solution. The microporosity enlarged the surface area of the wnf-CPC and so promoted degradation of the wnf-CPC when in contact with liquid. In addition, MG-63 cell attachment and proliferation on the wnf-CPC were superior to that on the CPC, indicating that incorporation of WNFs into CPC improved the biological properties for wnf-CPC. Following the implantation of wnf-CPC into bone defects of rabbits, histological evaluation showed that wnf-CPC enhanced the efficiency of new bone formation in comparison with CPC, indicating excellent biocompatibility and osteogenesis of wnf-CPC. In conclusion, wnf-CPC exhibited promising prospects in bone regeneration.Keywords: calcium phosphate cement, degradability, cell and tissue responses, biocompatibility
format article
author Guo H
Wei J
Song WH
Zhang S
Yan YG
Liu CS
Xiao TQ
author_facet Guo H
Wei J
Song WH
Zhang S
Yan YG
Liu CS
Xiao TQ
author_sort Guo H
title Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration
title_short Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration
title_full Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration
title_fullStr Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration
title_full_unstemmed Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration
title_sort wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration
publisher Dove Medical Press
publishDate 2012
url https://doaj.org/article/0bf36885143d4788acddf98395a98910
work_keys_str_mv AT guoh wollastonitenanofiberampndashdopedselfsettingcalciumphosphatebioactivecementforbonetissueregeneration
AT weij wollastonitenanofiberampndashdopedselfsettingcalciumphosphatebioactivecementforbonetissueregeneration
AT songwh wollastonitenanofiberampndashdopedselfsettingcalciumphosphatebioactivecementforbonetissueregeneration
AT zhangs wollastonitenanofiberampndashdopedselfsettingcalciumphosphatebioactivecementforbonetissueregeneration
AT yanyg wollastonitenanofiberampndashdopedselfsettingcalciumphosphatebioactivecementforbonetissueregeneration
AT liucs wollastonitenanofiberampndashdopedselfsettingcalciumphosphatebioactivecementforbonetissueregeneration
AT xiaotq wollastonitenanofiberampndashdopedselfsettingcalciumphosphatebioactivecementforbonetissueregeneration
_version_ 1718399381985558528