Unnecessary reliance on multilevel modelling to analyse nested data in neuroscience: When a traditional summary-statistics approach suffices
Nested data structures create statistical dependence that influences the effective sample size and statistical power of a study. Several methods are available for dealing with nested data, including the summary-statistics approach and multilevel modelling (MLM). Recent publications have heralded MLM...
Guardado en:
Autores principales: | Carolyn Beth McNabb, Kou Murayama |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0bf4faf0e04744bbaca58bde1a357f07 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Genetic variability in Chilean pepino (Solanum muricatum Aiton) fruit
por: Muñoz,Carlos, et al.
Publicado: (2014) -
THE MODES OF POSTERIOR DISTRIBUTIONS FOR MIXED LINEAR MODELS
por: CARRIQUIRY,ALICIA L, et al.
Publicado: (2007) -
Use of Analytic Factor Structure to Increase Heritability of Clonal Progeny Tests of Pinus taeda L.
por: Zapata-Valenzuela,Jaime
Publicado: (2012) -
Predicting clinical events using Bayesian multivariate linear mixed models with application to scleroderma
por: Ji Soo Kim, et al.
Publicado: (2021) -
Macroeconomic and Institutional Factors, Debt Composition and Capital Structure of Latin American Companies
por: Cláudio Bernardo, et al.
Publicado: (2018)