Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA

Abstract Despite representing one of the largest biomes on earth, biodiversity of the deep seafloor is still poorly known. Environmental DNA metabarcoding offers prospects for fast inventories and surveys, yet requires standardized sampling approaches and careful choice of environmental substrate. H...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Miriam I. Brandt, Florence Pradillon, Blandine Trouche, Nicolas Henry, Cathy Liautard-Haag, Marie-Anne Cambon-Bonavita, Valérie Cueff-Gauchard, Patrick Wincker, Caroline Belser, Julie Poulain, Sophie Arnaud-Haond, Daniela Zeppilli
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0bf9ae68010641a095d570d706532d9f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0bf9ae68010641a095d570d706532d9f
record_format dspace
spelling oai:doaj.org-article:0bf9ae68010641a095d570d706532d9f2021-12-02T14:26:25ZEvaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA10.1038/s41598-021-86396-82045-2322https://doaj.org/article/0bf9ae68010641a095d570d706532d9f2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86396-8https://doaj.org/toc/2045-2322Abstract Despite representing one of the largest biomes on earth, biodiversity of the deep seafloor is still poorly known. Environmental DNA metabarcoding offers prospects for fast inventories and surveys, yet requires standardized sampling approaches and careful choice of environmental substrate. Here, we aimed to optimize the genetic assessment of prokaryote (16S), protistan (18S V4), and metazoan (18S V1–V2, COI) communities, by evaluating sampling strategies for sediment and aboveground water, deployed simultaneously at one deep-sea site. For sediment, while size-class sorting through sieving had no significant effect on total detected alpha diversity and resolved similar taxonomic compositions at the phylum level for all markers studied, it effectively increased the detection of meiofauna phyla. For water, large volumes obtained from an in situ pump (~ 6000 L) detected significantly more metazoan diversity than 7.5 L collected in sampling boxes. However, the pump being limited by larger mesh sizes (> 20 µm), only captured a fraction of microbial diversity, while sampling boxes allowed access to the pico- and nanoplankton. More importantly, communities characterized by aboveground water samples significantly differed from those characterized by sediment, whatever volume used, and both sample types only shared between 3 and 8% of molecular units. Together, these results underline that sediment sieving may be recommended when targeting metazoans, and aboveground water does not represent an alternative to sediment sampling for inventories of benthic diversity.Miriam I. BrandtFlorence PradillonBlandine TroucheNicolas HenryCathy Liautard-HaagMarie-Anne Cambon-BonavitaValérie Cueff-GauchardPatrick WinckerCaroline BelserJulie PoulainSophie Arnaud-HaondDaniela ZeppilliNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Miriam I. Brandt
Florence Pradillon
Blandine Trouche
Nicolas Henry
Cathy Liautard-Haag
Marie-Anne Cambon-Bonavita
Valérie Cueff-Gauchard
Patrick Wincker
Caroline Belser
Julie Poulain
Sophie Arnaud-Haond
Daniela Zeppilli
Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA
description Abstract Despite representing one of the largest biomes on earth, biodiversity of the deep seafloor is still poorly known. Environmental DNA metabarcoding offers prospects for fast inventories and surveys, yet requires standardized sampling approaches and careful choice of environmental substrate. Here, we aimed to optimize the genetic assessment of prokaryote (16S), protistan (18S V4), and metazoan (18S V1–V2, COI) communities, by evaluating sampling strategies for sediment and aboveground water, deployed simultaneously at one deep-sea site. For sediment, while size-class sorting through sieving had no significant effect on total detected alpha diversity and resolved similar taxonomic compositions at the phylum level for all markers studied, it effectively increased the detection of meiofauna phyla. For water, large volumes obtained from an in situ pump (~ 6000 L) detected significantly more metazoan diversity than 7.5 L collected in sampling boxes. However, the pump being limited by larger mesh sizes (> 20 µm), only captured a fraction of microbial diversity, while sampling boxes allowed access to the pico- and nanoplankton. More importantly, communities characterized by aboveground water samples significantly differed from those characterized by sediment, whatever volume used, and both sample types only shared between 3 and 8% of molecular units. Together, these results underline that sediment sieving may be recommended when targeting metazoans, and aboveground water does not represent an alternative to sediment sampling for inventories of benthic diversity.
format article
author Miriam I. Brandt
Florence Pradillon
Blandine Trouche
Nicolas Henry
Cathy Liautard-Haag
Marie-Anne Cambon-Bonavita
Valérie Cueff-Gauchard
Patrick Wincker
Caroline Belser
Julie Poulain
Sophie Arnaud-Haond
Daniela Zeppilli
author_facet Miriam I. Brandt
Florence Pradillon
Blandine Trouche
Nicolas Henry
Cathy Liautard-Haag
Marie-Anne Cambon-Bonavita
Valérie Cueff-Gauchard
Patrick Wincker
Caroline Belser
Julie Poulain
Sophie Arnaud-Haond
Daniela Zeppilli
author_sort Miriam I. Brandt
title Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA
title_short Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA
title_full Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA
title_fullStr Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA
title_full_unstemmed Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA
title_sort evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental dna
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0bf9ae68010641a095d570d706532d9f
work_keys_str_mv AT miriamibrandt evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT florencepradillon evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT blandinetrouche evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT nicolashenry evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT cathyliautardhaag evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT marieannecambonbonavita evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT valeriecueffgauchard evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT patrickwincker evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT carolinebelser evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT juliepoulain evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT sophiearnaudhaond evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
AT danielazeppilli evaluatingsedimentandwatersamplingmethodsfortheestimationofdeepseabiodiversityusingenvironmentaldna
_version_ 1718391292474425344