Autologous culture method improves retention of tumors’ native properties
Abstract No current in vitro tumor model replicates a tumor’s in vivo microenvironment. A culturing technique that better preserves a tumor’s pathophysiological conditions is needed for some important clinical applications, including personalized drug-sensitivity/resistance assays. In this study, we...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0bfa3c25d3e04fc6816c771667b65652 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract No current in vitro tumor model replicates a tumor’s in vivo microenvironment. A culturing technique that better preserves a tumor’s pathophysiological conditions is needed for some important clinical applications, including personalized drug-sensitivity/resistance assays. In this study, we utilized autologous serum or body fluid to build a 3D scaffold and grow a patient’s tumor. We named this technique “3D-ACM” (autologous culture method). Forty-five clinical samples from biopsies, surgically removed tumor tissues and malignant body fluids were cultured with 3D-ACM. Traditional 3D-FBS (fetal bovine serum) cultures were performed side-by-side for comparison. The results were that cells cultured in 3D-ACM rebuilt tissue-like structures, and retained their immuno-phenotypes and cytokine productions. In contrast, the 3D-FBS method promoted mesenchymal cell proliferation. In preliminary chemo drug-sensitivity assays, significantly higher mortality was always associated with FBS-cultured cells. Accordingly, 3D-ACM appears to more reliably preserve a tumor’s biological characteristics, which might improve the accuracy of drug-testing for personalized cancer treatment. |
---|