New method for wind potential prediction using recurrent artificial neural networks

The aim of the study is to find the right architecture of the NARX neural network, in order to perform the daily prediction of the maximum wind speed of Laayoune city. We relied on the Levenberg-Marquardt optimization algorithm. The RMSE error metric showed that NARX-SP outperforms NARX-P.

Guardado en:
Detalles Bibliográficos
Autores principales: Amellas Yousra, Serag Saif, Loukdache Fahd, Djebli Abdelouahed, Echchelh Adil
Formato: article
Lenguaje:EN
FR
Publicado: EDP Sciences 2021
Materias:
Acceso en línea:https://doaj.org/article/0c028d49d3ea44b7a0234a1fa7859d88
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0c028d49d3ea44b7a0234a1fa7859d88
record_format dspace
spelling oai:doaj.org-article:0c028d49d3ea44b7a0234a1fa7859d882021-11-12T11:44:08ZNew method for wind potential prediction using recurrent artificial neural networks2267-124210.1051/e3sconf/202131901111https://doaj.org/article/0c028d49d3ea44b7a0234a1fa7859d882021-01-01T00:00:00Zhttps://www.e3s-conferences.org/articles/e3sconf/pdf/2021/95/e3sconf_vigisan_01111.pdfhttps://doaj.org/toc/2267-1242The aim of the study is to find the right architecture of the NARX neural network, in order to perform the daily prediction of the maximum wind speed of Laayoune city. We relied on the Levenberg-Marquardt optimization algorithm. The RMSE error metric showed that NARX-SP outperforms NARX-P.Amellas YousraSerag SaifLoukdache FahdDjebli AbdelouahedEchchelh AdilEDP SciencesarticleEnvironmental sciencesGE1-350ENFRE3S Web of Conferences, Vol 319, p 01111 (2021)
institution DOAJ
collection DOAJ
language EN
FR
topic Environmental sciences
GE1-350
spellingShingle Environmental sciences
GE1-350
Amellas Yousra
Serag Saif
Loukdache Fahd
Djebli Abdelouahed
Echchelh Adil
New method for wind potential prediction using recurrent artificial neural networks
description The aim of the study is to find the right architecture of the NARX neural network, in order to perform the daily prediction of the maximum wind speed of Laayoune city. We relied on the Levenberg-Marquardt optimization algorithm. The RMSE error metric showed that NARX-SP outperforms NARX-P.
format article
author Amellas Yousra
Serag Saif
Loukdache Fahd
Djebli Abdelouahed
Echchelh Adil
author_facet Amellas Yousra
Serag Saif
Loukdache Fahd
Djebli Abdelouahed
Echchelh Adil
author_sort Amellas Yousra
title New method for wind potential prediction using recurrent artificial neural networks
title_short New method for wind potential prediction using recurrent artificial neural networks
title_full New method for wind potential prediction using recurrent artificial neural networks
title_fullStr New method for wind potential prediction using recurrent artificial neural networks
title_full_unstemmed New method for wind potential prediction using recurrent artificial neural networks
title_sort new method for wind potential prediction using recurrent artificial neural networks
publisher EDP Sciences
publishDate 2021
url https://doaj.org/article/0c028d49d3ea44b7a0234a1fa7859d88
work_keys_str_mv AT amellasyousra newmethodforwindpotentialpredictionusingrecurrentartificialneuralnetworks
AT seragsaif newmethodforwindpotentialpredictionusingrecurrentartificialneuralnetworks
AT loukdachefahd newmethodforwindpotentialpredictionusingrecurrentartificialneuralnetworks
AT djebliabdelouahed newmethodforwindpotentialpredictionusingrecurrentartificialneuralnetworks
AT echchelhadil newmethodforwindpotentialpredictionusingrecurrentartificialneuralnetworks
_version_ 1718430598456934400