New method for wind potential prediction using recurrent artificial neural networks
The aim of the study is to find the right architecture of the NARX neural network, in order to perform the daily prediction of the maximum wind speed of Laayoune city. We relied on the Levenberg-Marquardt optimization algorithm. The RMSE error metric showed that NARX-SP outperforms NARX-P.
Guardado en:
Autores principales: | Amellas Yousra, Serag Saif, Loukdache Fahd, Djebli Abdelouahed, Echchelh Adil |
---|---|
Formato: | article |
Lenguaje: | EN FR |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c028d49d3ea44b7a0234a1fa7859d88 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accuracy of wind speed predictability with heights using Recurrent Neural networks
por: Mohandes M., et al.
Publicado: (2021) -
An Analysis on Wind Speed Forecasting Result with the Elman Recurrent Neural Network Method
por: Bettiza Martaleli
Publicado: (2021) -
Prediction of solar direct irradiance in Iraq by using artificial neural network
por: zana Saleem, et al.
Publicado: (2021) -
Prediction of rubber vulcanization using an artificial neural network
por: Lubura Jelena D., et al.
Publicado: (2021) -
Comparing feedforward and recurrent neural network architectures with human behavior in artificial grammar learning
por: Andrea Alamia, et al.
Publicado: (2020)