Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury
Mario Menk, Jan Adriaan Graw, Clarissa von Haefen, Hendrik Steinkraus, Burkhard Lachmann, Claudia D Spies, David Schwaiberger Department of Anesthesiology and Operative Intensive Care Medicine, Charité – University Medicine Berlin, FreieUniversität Berlin, Humboldt-Univ...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c0452c5e4494ddca7fab04d21ccd0f3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0c0452c5e4494ddca7fab04d21ccd0f3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0c0452c5e4494ddca7fab04d21ccd0f32021-12-02T09:23:47ZAngiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury1178-7031https://doaj.org/article/0c0452c5e4494ddca7fab04d21ccd0f32018-05-01T00:00:00Zhttps://www.dovepress.com/angiotensin-ii-type-2-receptor-agonist-compound-21-attenuates-pulmonar-peer-reviewed-article-JIRhttps://doaj.org/toc/1178-7031Mario Menk, Jan Adriaan Graw, Clarissa von Haefen, Hendrik Steinkraus, Burkhard Lachmann, Claudia D Spies, David Schwaiberger Department of Anesthesiology and Operative Intensive Care Medicine, Charité – University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany Purpose: Although the role of the angiotensin II type 2 (AT2) receptor in acute lung injury is not yet completely understood, a protective role of this receptor subtype has been suggested. We hypothesized that, in a rodent model of acute lung injury, stimulation of the AT2 receptor with the direct agonist Compound 21 (C21) might have a beneficial effect on pulmonary inflammation and might improve pulmonary gas exchange. Materials and methods: Male adult rats were divided into a treatment group that received pulmonary lavage followed by mechanical ventilation (LAV, n=9), a group receiving pulmonary lavage, mechanical ventilation, and direct stimulation of the AT2 receptor with C21 (LAV+C21, n=9), and a control group that received mechanical ventilation only (control, n=9). Arterial blood gas analysis was performed every 30 min throughout the 240-min observation period. Lung tissue and plasma samples were obtained at 240 min after the start of mechanical ventilation. Protein content and surface activity of bronchoalveolar lavage fluid were assessed and the wet/dry-weight ratio of lungs was determined. Transcriptional and translational regulation of pro- and antiinflammatory cytokines IL-1β, tumor necrosis factor-alpha, IL-6, IL-10, and IL-4 was determined in lungs and in plasma. Results: Pulmonary lavage led to a significant impairment of gas exchange, the formation of lung edema, and the induction of pulmonary inflammation. Protein content of lavage fluid was increased and contained washed-out surfactant. Direct AT2 receptor stimulation with C21 led to a significant inhibition of tumor necrosis factor-alpha and IL-6 expressions in the lungs, whereas the expressions of IL-1, IL-10, and IL-4 remained unchanged. During the 240-min observation period, AT2 receptor stimulation did not improve pulmonary gas exchange or lung edema. Conclusion: In this rodent model of acute lung injury after repeated pulmonary lavage, AT2 receptor stimulation attenuates pulmonary inflammation but does not improve gas exchange. Keywords: AT2 receptor, lung failure, ARDS, acute lung injury, Compound 21 (C21)Menk MGraw JAvon Haefen CSteinkraus HLachmann BSpies CDSchwaiberger DDove Medical PressarticleAT2 receptorlung failureARDSacute lung injuryCompound 21 (C21)PathologyRB1-214Therapeutics. PharmacologyRM1-950ENJournal of Inflammation Research, Vol Volume 11, Pp 169-178 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
AT2 receptor lung failure ARDS acute lung injury Compound 21 (C21) Pathology RB1-214 Therapeutics. Pharmacology RM1-950 |
spellingShingle |
AT2 receptor lung failure ARDS acute lung injury Compound 21 (C21) Pathology RB1-214 Therapeutics. Pharmacology RM1-950 Menk M Graw JA von Haefen C Steinkraus H Lachmann B Spies CD Schwaiberger D Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury |
description |
Mario Menk, Jan Adriaan Graw, Clarissa von Haefen, Hendrik Steinkraus, Burkhard Lachmann, Claudia D Spies, David Schwaiberger Department of Anesthesiology and Operative Intensive Care Medicine, Charité – University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany Purpose: Although the role of the angiotensin II type 2 (AT2) receptor in acute lung injury is not yet completely understood, a protective role of this receptor subtype has been suggested. We hypothesized that, in a rodent model of acute lung injury, stimulation of the AT2 receptor with the direct agonist Compound 21 (C21) might have a beneficial effect on pulmonary inflammation and might improve pulmonary gas exchange. Materials and methods: Male adult rats were divided into a treatment group that received pulmonary lavage followed by mechanical ventilation (LAV, n=9), a group receiving pulmonary lavage, mechanical ventilation, and direct stimulation of the AT2 receptor with C21 (LAV+C21, n=9), and a control group that received mechanical ventilation only (control, n=9). Arterial blood gas analysis was performed every 30 min throughout the 240-min observation period. Lung tissue and plasma samples were obtained at 240 min after the start of mechanical ventilation. Protein content and surface activity of bronchoalveolar lavage fluid were assessed and the wet/dry-weight ratio of lungs was determined. Transcriptional and translational regulation of pro- and antiinflammatory cytokines IL-1β, tumor necrosis factor-alpha, IL-6, IL-10, and IL-4 was determined in lungs and in plasma. Results: Pulmonary lavage led to a significant impairment of gas exchange, the formation of lung edema, and the induction of pulmonary inflammation. Protein content of lavage fluid was increased and contained washed-out surfactant. Direct AT2 receptor stimulation with C21 led to a significant inhibition of tumor necrosis factor-alpha and IL-6 expressions in the lungs, whereas the expressions of IL-1, IL-10, and IL-4 remained unchanged. During the 240-min observation period, AT2 receptor stimulation did not improve pulmonary gas exchange or lung edema. Conclusion: In this rodent model of acute lung injury after repeated pulmonary lavage, AT2 receptor stimulation attenuates pulmonary inflammation but does not improve gas exchange. Keywords: AT2 receptor, lung failure, ARDS, acute lung injury, Compound 21 (C21) |
format |
article |
author |
Menk M Graw JA von Haefen C Steinkraus H Lachmann B Spies CD Schwaiberger D |
author_facet |
Menk M Graw JA von Haefen C Steinkraus H Lachmann B Spies CD Schwaiberger D |
author_sort |
Menk M |
title |
Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury |
title_short |
Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury |
title_full |
Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury |
title_fullStr |
Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury |
title_full_unstemmed |
Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury |
title_sort |
angiotensin ii type 2 receptor agonist compound 21 attenuates pulmonary inflammation in a model of acute lung injury |
publisher |
Dove Medical Press |
publishDate |
2018 |
url |
https://doaj.org/article/0c0452c5e4494ddca7fab04d21ccd0f3 |
work_keys_str_mv |
AT menkm angiotensiniitype2receptoragonistcompound21attenuatespulmonaryinflammationinamodelofacutelunginjury AT grawja angiotensiniitype2receptoragonistcompound21attenuatespulmonaryinflammationinamodelofacutelunginjury AT vonhaefenc angiotensiniitype2receptoragonistcompound21attenuatespulmonaryinflammationinamodelofacutelunginjury AT steinkraush angiotensiniitype2receptoragonistcompound21attenuatespulmonaryinflammationinamodelofacutelunginjury AT lachmannb angiotensiniitype2receptoragonistcompound21attenuatespulmonaryinflammationinamodelofacutelunginjury AT spiescd angiotensiniitype2receptoragonistcompound21attenuatespulmonaryinflammationinamodelofacutelunginjury AT schwaibergerd angiotensiniitype2receptoragonistcompound21attenuatespulmonaryinflammationinamodelofacutelunginjury |
_version_ |
1718398105634734080 |