Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation?

ABSTRACT Uncultured and therefore uncharacterized Bacteroidetes lineages are ubiquitous in many natural ecosystems which specialize in lignocellulose degradation. However, their metabolic contribution remains mysterious, as well-studied cultured Bacteroidetes have been shown to degrade only soluble...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. E. Naas, A. K. Mackenzie, J. Mravec, J. Schückel, W. G. T. Willats, V. G. H. Eijsink, P. B. Pope
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2014
Materias:
Acceso en línea:https://doaj.org/article/0c13abb08ec24869be8680381bc27c41
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0c13abb08ec24869be8680381bc27c41
record_format dspace
spelling oai:doaj.org-article:0c13abb08ec24869be8680381bc27c412021-11-15T15:47:22ZDo Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation?10.1128/mBio.01401-142150-7511https://doaj.org/article/0c13abb08ec24869be8680381bc27c412014-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01401-14https://doaj.org/toc/2150-7511ABSTRACT Uncultured and therefore uncharacterized Bacteroidetes lineages are ubiquitous in many natural ecosystems which specialize in lignocellulose degradation. However, their metabolic contribution remains mysterious, as well-studied cultured Bacteroidetes have been shown to degrade only soluble polysaccharides within the human distal gut and herbivore rumen. We have interrogated a reconstructed genome from an uncultured Bacteroidetes phylotype that dominates a switchgrass-associated community within the cow rumen. Importantly, this characterization effort has revealed the first preliminary evidence for polysaccharide utilization locus (PUL)-catalyzed conversion of cellulose. Based on these findings, we propose a further expansion of the PUL paradigm and the saccharolytic capacity of rumen Bacteroidetes species to include cellulose, the most abundant terrestrial polysaccharide on Earth. Moreover, the perspective of a cellulolytic PUL lays the foundation for PULs to be considered an alternative mechanism for cellulose degradation, next to cellulosomes and free-enzyme systems.A. E. NaasA. K. MackenzieJ. MravecJ. SchückelW. G. T. WillatsV. G. H. EijsinkP. B. PopeAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 5, Iss 4 (2014)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
A. E. Naas
A. K. Mackenzie
J. Mravec
J. Schückel
W. G. T. Willats
V. G. H. Eijsink
P. B. Pope
Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation?
description ABSTRACT Uncultured and therefore uncharacterized Bacteroidetes lineages are ubiquitous in many natural ecosystems which specialize in lignocellulose degradation. However, their metabolic contribution remains mysterious, as well-studied cultured Bacteroidetes have been shown to degrade only soluble polysaccharides within the human distal gut and herbivore rumen. We have interrogated a reconstructed genome from an uncultured Bacteroidetes phylotype that dominates a switchgrass-associated community within the cow rumen. Importantly, this characterization effort has revealed the first preliminary evidence for polysaccharide utilization locus (PUL)-catalyzed conversion of cellulose. Based on these findings, we propose a further expansion of the PUL paradigm and the saccharolytic capacity of rumen Bacteroidetes species to include cellulose, the most abundant terrestrial polysaccharide on Earth. Moreover, the perspective of a cellulolytic PUL lays the foundation for PULs to be considered an alternative mechanism for cellulose degradation, next to cellulosomes and free-enzyme systems.
format article
author A. E. Naas
A. K. Mackenzie
J. Mravec
J. Schückel
W. G. T. Willats
V. G. H. Eijsink
P. B. Pope
author_facet A. E. Naas
A. K. Mackenzie
J. Mravec
J. Schückel
W. G. T. Willats
V. G. H. Eijsink
P. B. Pope
author_sort A. E. Naas
title Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation?
title_short Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation?
title_full Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation?
title_fullStr Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation?
title_full_unstemmed Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation?
title_sort do rumen <italic toggle="yes">bacteroidetes</italic> utilize an alternative mechanism for cellulose degradation?
publisher American Society for Microbiology
publishDate 2014
url https://doaj.org/article/0c13abb08ec24869be8680381bc27c41
work_keys_str_mv AT aenaas dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation
AT akmackenzie dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation
AT jmravec dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation
AT jschuckel dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation
AT wgtwillats dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation
AT vgheijsink dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation
AT pbpope dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation
_version_ 1718427501352452096