Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation?
ABSTRACT Uncultured and therefore uncharacterized Bacteroidetes lineages are ubiquitous in many natural ecosystems which specialize in lignocellulose degradation. However, their metabolic contribution remains mysterious, as well-studied cultured Bacteroidetes have been shown to degrade only soluble...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c13abb08ec24869be8680381bc27c41 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0c13abb08ec24869be8680381bc27c41 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0c13abb08ec24869be8680381bc27c412021-11-15T15:47:22ZDo Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation?10.1128/mBio.01401-142150-7511https://doaj.org/article/0c13abb08ec24869be8680381bc27c412014-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01401-14https://doaj.org/toc/2150-7511ABSTRACT Uncultured and therefore uncharacterized Bacteroidetes lineages are ubiquitous in many natural ecosystems which specialize in lignocellulose degradation. However, their metabolic contribution remains mysterious, as well-studied cultured Bacteroidetes have been shown to degrade only soluble polysaccharides within the human distal gut and herbivore rumen. We have interrogated a reconstructed genome from an uncultured Bacteroidetes phylotype that dominates a switchgrass-associated community within the cow rumen. Importantly, this characterization effort has revealed the first preliminary evidence for polysaccharide utilization locus (PUL)-catalyzed conversion of cellulose. Based on these findings, we propose a further expansion of the PUL paradigm and the saccharolytic capacity of rumen Bacteroidetes species to include cellulose, the most abundant terrestrial polysaccharide on Earth. Moreover, the perspective of a cellulolytic PUL lays the foundation for PULs to be considered an alternative mechanism for cellulose degradation, next to cellulosomes and free-enzyme systems.A. E. NaasA. K. MackenzieJ. MravecJ. SchückelW. G. T. WillatsV. G. H. EijsinkP. B. PopeAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 5, Iss 4 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 A. E. Naas A. K. Mackenzie J. Mravec J. Schückel W. G. T. Willats V. G. H. Eijsink P. B. Pope Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation? |
description |
ABSTRACT Uncultured and therefore uncharacterized Bacteroidetes lineages are ubiquitous in many natural ecosystems which specialize in lignocellulose degradation. However, their metabolic contribution remains mysterious, as well-studied cultured Bacteroidetes have been shown to degrade only soluble polysaccharides within the human distal gut and herbivore rumen. We have interrogated a reconstructed genome from an uncultured Bacteroidetes phylotype that dominates a switchgrass-associated community within the cow rumen. Importantly, this characterization effort has revealed the first preliminary evidence for polysaccharide utilization locus (PUL)-catalyzed conversion of cellulose. Based on these findings, we propose a further expansion of the PUL paradigm and the saccharolytic capacity of rumen Bacteroidetes species to include cellulose, the most abundant terrestrial polysaccharide on Earth. Moreover, the perspective of a cellulolytic PUL lays the foundation for PULs to be considered an alternative mechanism for cellulose degradation, next to cellulosomes and free-enzyme systems. |
format |
article |
author |
A. E. Naas A. K. Mackenzie J. Mravec J. Schückel W. G. T. Willats V. G. H. Eijsink P. B. Pope |
author_facet |
A. E. Naas A. K. Mackenzie J. Mravec J. Schückel W. G. T. Willats V. G. H. Eijsink P. B. Pope |
author_sort |
A. E. Naas |
title |
Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation? |
title_short |
Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation? |
title_full |
Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation? |
title_fullStr |
Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation? |
title_full_unstemmed |
Do Rumen <italic toggle="yes">Bacteroidetes</italic> Utilize an Alternative Mechanism for Cellulose Degradation? |
title_sort |
do rumen <italic toggle="yes">bacteroidetes</italic> utilize an alternative mechanism for cellulose degradation? |
publisher |
American Society for Microbiology |
publishDate |
2014 |
url |
https://doaj.org/article/0c13abb08ec24869be8680381bc27c41 |
work_keys_str_mv |
AT aenaas dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation AT akmackenzie dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation AT jmravec dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation AT jschuckel dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation AT wgtwillats dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation AT vgheijsink dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation AT pbpope dorumenitalictoggleyesbacteroidetesitalicutilizeanalternativemechanismforcellulosedegradation |
_version_ |
1718427501352452096 |