Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities

In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Danfeng Wu, Li-Jun Zhu, Zhuang Shan, Tzu-Chien Yin
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/0c1728e42d214949a1827721acf181a7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0c1728e42d214949a1827721acf181a7
record_format dspace
spelling oai:doaj.org-article:0c1728e42d214949a1827721acf181a72021-11-15T01:19:16ZAnalysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities2314-478510.1155/2021/2218666https://doaj.org/article/0c1728e42d214949a1827721acf181a72021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/2218666https://doaj.org/toc/2314-4785In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms have been obtained under some mild conditions.Danfeng WuLi-Jun ZhuZhuang ShanTzu-Chien YinHindawi LimitedarticleMathematicsQA1-939ENJournal of Mathematics, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Mathematics
QA1-939
spellingShingle Mathematics
QA1-939
Danfeng Wu
Li-Jun Zhu
Zhuang Shan
Tzu-Chien Yin
Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
description In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms have been obtained under some mild conditions.
format article
author Danfeng Wu
Li-Jun Zhu
Zhuang Shan
Tzu-Chien Yin
author_facet Danfeng Wu
Li-Jun Zhu
Zhuang Shan
Tzu-Chien Yin
author_sort Danfeng Wu
title Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
title_short Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
title_full Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
title_fullStr Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
title_full_unstemmed Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
title_sort analysis of subgradient extragradient iterative schemes for variational inequalities
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/0c1728e42d214949a1827721acf181a7
work_keys_str_mv AT danfengwu analysisofsubgradientextragradientiterativeschemesforvariationalinequalities
AT lijunzhu analysisofsubgradientextragradientiterativeschemesforvariationalinequalities
AT zhuangshan analysisofsubgradientextragradientiterativeschemesforvariationalinequalities
AT tzuchienyin analysisofsubgradientextragradientiterativeschemesforvariationalinequalities
_version_ 1718428964528062464