A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
The lidar is susceptible to the dark current of the detector and the background light during the measuring process, which results in a significant amount of noise in the lidar return signal. To reduce noise, a novel denoising method based on the convolutional autoencoding deep-learning neural networ...
Guardado en:
Autores principales: | Minghuan Hu, Jiandong Mao, Juan Li, Qiang Wang, Yi Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c1aadc8638a48bdacb3944ca4abe698 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
por: Emmanuel Pintelas, et al.
Publicado: (2021) -
Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture
por: Sergio Saponara, et al.
Publicado: (2021) -
Improving Lidar Windshear Detection Efficiency by Removal of “Gentle Ramps”
por: Kai Kwong Hon, et al.
Publicado: (2021) -
ADAGE-Based Integration of Publicly Available <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content> Gene Expression Data with Denoising Autoencoders Illuminates Microbe-Host Interactions
por: Jie Tan, et al.
Publicado: (2016) -
Statistical Characteristics of Cloud Heights over Lanzhou, China from Multiple Years of Micro-Pulse Lidar Observation
por: Xianjie Cao, et al.
Publicado: (2021)