A Novel Lidar Signal Denoising Method Based on Convolutional Autoencoding Deep Learning Neural Network
The lidar is susceptible to the dark current of the detector and the background light during the measuring process, which results in a significant amount of noise in the lidar return signal. To reduce noise, a novel denoising method based on the convolutional autoencoding deep-learning neural networ...
Enregistré dans:
Auteurs principaux: | Minghuan Hu, Jiandong Mao, Juan Li, Qiang Wang, Yi Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0c1aadc8638a48bdacb3944ca4abe698 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
par: Emmanuel Pintelas, et autres
Publié: (2021) -
Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture
par: Sergio Saponara, et autres
Publié: (2021) -
Improving Lidar Windshear Detection Efficiency by Removal of “Gentle Ramps”
par: Kai Kwong Hon, et autres
Publié: (2021) -
ADAGE-Based Integration of Publicly Available <named-content content-type="genus-species">Pseudomonas aeruginosa</named-content> Gene Expression Data with Denoising Autoencoders Illuminates Microbe-Host Interactions
par: Jie Tan, et autres
Publié: (2016) -
Statistical Characteristics of Cloud Heights over Lanzhou, China from Multiple Years of Micro-Pulse Lidar Observation
par: Xianjie Cao, et autres
Publié: (2021)