On the evolutionary bifurcation curves for the one-dimensional prescribed mean curvature equation with logistic type
We study the bifurcation diagrams and exact multiplicity of positive solutions for the one-dimensional prescribed mean curvature equation −u′1+u′2′=λu1+up,−L<x<L,u(−L)=u(L)=0,\left\{\begin{array}{l}-{\left(\frac{{u}^{^{\prime} }}{\sqrt{1+{u}^{^{\prime} 2}}}\right)}^{^{\prime} }=\lambda {\left(...
Guardado en:
Autores principales: | Zhang Jiajia, Qiao Yuanhua, Duan Lijuan, Miao Jun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c28dc2095504b5eb0296f9998f8d81a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Oscillatory bifurcation problems for ODEs with logarithmic nonlinearity
por: Shibata Tetsutaro
Publicado: (2021) -
Third-order differential equations with three-point boundary conditions
por: Cabada Alberto, et al.
Publicado: (2021) -
Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations
por: Boscaggin Alberto, et al.
Publicado: (2021) -
Oscillation of solutions to a generalized forced nonlinear conformable fractional differential equation
por: Ogunbanjo,A. M., et al.
Publicado: (2019) -
Prey-predator model in drainage system with migration and harvesting
por: Roy Banani, et al.
Publicado: (2021)