Upscaling the porosity–permeability relationship of a microporous carbonate for Darcy-scale flow with machine learning
Abstract The permeability of a pore structure is typically described by stochastic representations of its geometrical attributes (e.g. pore-size distribution, porosity, coordination number). Database-driven numerical solvers for large model domains can only accurately predict large-scale flow behavi...
Guardado en:
Autores principales: | H. P. Menke, J. Maes, S. Geiger |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c2de835e3b64b44a545df75d6cf7758 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mechatronic system’s permeable materials with controlled porosity
por: Povstyanoy O., et al.
Publicado: (2021) -
Predicting porosity, permeability, and tortuosity of porous media from images by deep learning
por: Krzysztof M. Graczyk, et al.
Publicado: (2020) -
Correlation between permeability and porosity with other properties of concrete
por: Salman Al-lami Mohammed
Publicado: (2021) -
Gas sorption and non-Darcy flow in shale reservoirs
por: Xiukun Wang, et al.
Publicado: (2017) -
Nonlinear radiative Maxwell nanofluid flow in a Darcy–Forchheimer permeable media over a stretching cylinder with chemical reaction and bioconvection
por: Chunyan Liu, et al.
Publicado: (2021)