The study on a new method of preparing PMMA forming composite bipolar plate
Abstract The recent oil resource shortage has prompted the development of the proton exchange membrane fuel cell (PEMFC) system. PEMFC is a possible source of power that can be used in aircraft, household electricity, agriculture, fishing, motor vehicles, ships, submarines, bicycles, and other porta...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c3669f31627422cbaafa2184bf8ac9f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The recent oil resource shortage has prompted the development of the proton exchange membrane fuel cell (PEMFC) system. PEMFC is a possible source of power that can be used in aircraft, household electricity, agriculture, fishing, motor vehicles, ships, submarines, bicycles, and other portable power systems in the future. This paper emphasizes the production of lightweight bipolar plates to solve several existing problems in the PEMFC system, including weight, cost, and integration. Conventional bipolar plates account for approximately 90% of the weight of battery packs. Therefore, an injection molded flow-field plate constructed from polymethylmethacrylate (PMMA) is developed herein to reduce the weight of the PEMFC system. Computer-aided engineering (CAE) mold flow analysis is then used to simulate the experimental design based on the finished products. Experimental analysis is also performed on the adhesion results of the plates. The results indicate that the establishment of the injection mold using CAE simulation improves mold development and reduces cost. Mechanical coarsening on the surface of the PMMA results in improved adhesion (> 50 N) at temperatures higher than 80 °C. Thus, mechanical coarsening is suitable for the PEMFC system. The problem of conventional weight is solved by reducing the weight by 70%. |
---|