Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.
Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound mode...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c373b53dde745b3915759e638327ef9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0c373b53dde745b3915759e638327ef9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0c373b53dde745b3915759e638327ef92021-11-18T08:50:38ZValidation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.1932-620310.1371/journal.pone.0076263https://doaj.org/article/0c373b53dde745b3915759e638327ef92013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24146846/?tool=EBIhttps://doaj.org/toc/1932-6203Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound model to distinguish between MTB and NTM. It is based on thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and partial least square discriminant analysis. Here we report the validation of this model with two independent sample sets, one consisting of 39 MTB and 17 NTM isolates from the Netherlands, the other comprising 103 isolates (91 MTB and 12 NTM) from Stellenbosch, Cape Town, South Africa. All the MTB strains in the 56 Dutch samples were correctly identified and the model had a sensitivity of 100% and a specificity of 94%. For the South African samples the model had a sensitivity of 88% and specificity of 100%. Based on our model, we have developed a new decision-tree that allows the differentiation of MTB from NTM with 100% accuracy. Encouraged by these findings we will proceed with the development of a simple, rapid, affordable, high-throughput test to identify MTB directly in sputum.Ngoc A DangSjoukje KuijperElisabetta WaltersMareli ClaassensDick van SoolingenGabriel Vivo-TruyolsHans-Gerd JanssenArend H J KolkPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 10, p e76263 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ngoc A Dang Sjoukje Kuijper Elisabetta Walters Mareli Claassens Dick van Soolingen Gabriel Vivo-Truyols Hans-Gerd Janssen Arend H J Kolk Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics. |
description |
Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound model to distinguish between MTB and NTM. It is based on thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and partial least square discriminant analysis. Here we report the validation of this model with two independent sample sets, one consisting of 39 MTB and 17 NTM isolates from the Netherlands, the other comprising 103 isolates (91 MTB and 12 NTM) from Stellenbosch, Cape Town, South Africa. All the MTB strains in the 56 Dutch samples were correctly identified and the model had a sensitivity of 100% and a specificity of 94%. For the South African samples the model had a sensitivity of 88% and specificity of 100%. Based on our model, we have developed a new decision-tree that allows the differentiation of MTB from NTM with 100% accuracy. Encouraged by these findings we will proceed with the development of a simple, rapid, affordable, high-throughput test to identify MTB directly in sputum. |
format |
article |
author |
Ngoc A Dang Sjoukje Kuijper Elisabetta Walters Mareli Claassens Dick van Soolingen Gabriel Vivo-Truyols Hans-Gerd Janssen Arend H J Kolk |
author_facet |
Ngoc A Dang Sjoukje Kuijper Elisabetta Walters Mareli Claassens Dick van Soolingen Gabriel Vivo-Truyols Hans-Gerd Janssen Arend H J Kolk |
author_sort |
Ngoc A Dang |
title |
Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics. |
title_short |
Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics. |
title_full |
Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics. |
title_fullStr |
Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics. |
title_full_unstemmed |
Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics. |
title_sort |
validation of biomarkers for distinguishing mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/0c373b53dde745b3915759e638327ef9 |
work_keys_str_mv |
AT ngocadang validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT sjoukjekuijper validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT elisabettawalters validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT mareliclaassens validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT dickvansoolingen validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT gabrielvivotruyols validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT hansgerdjanssen validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics AT arendhjkolk validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics |
_version_ |
1718421245094002688 |