Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.

Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound mode...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ngoc A Dang, Sjoukje Kuijper, Elisabetta Walters, Mareli Claassens, Dick van Soolingen, Gabriel Vivo-Truyols, Hans-Gerd Janssen, Arend H J Kolk
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0c373b53dde745b3915759e638327ef9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0c373b53dde745b3915759e638327ef9
record_format dspace
spelling oai:doaj.org-article:0c373b53dde745b3915759e638327ef92021-11-18T08:50:38ZValidation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.1932-620310.1371/journal.pone.0076263https://doaj.org/article/0c373b53dde745b3915759e638327ef92013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24146846/?tool=EBIhttps://doaj.org/toc/1932-6203Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound model to distinguish between MTB and NTM. It is based on thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and partial least square discriminant analysis. Here we report the validation of this model with two independent sample sets, one consisting of 39 MTB and 17 NTM isolates from the Netherlands, the other comprising 103 isolates (91 MTB and 12 NTM) from Stellenbosch, Cape Town, South Africa. All the MTB strains in the 56 Dutch samples were correctly identified and the model had a sensitivity of 100% and a specificity of 94%. For the South African samples the model had a sensitivity of 88% and specificity of 100%. Based on our model, we have developed a new decision-tree that allows the differentiation of MTB from NTM with 100% accuracy. Encouraged by these findings we will proceed with the development of a simple, rapid, affordable, high-throughput test to identify MTB directly in sputum.Ngoc A DangSjoukje KuijperElisabetta WaltersMareli ClaassensDick van SoolingenGabriel Vivo-TruyolsHans-Gerd JanssenArend H J KolkPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 10, p e76263 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ngoc A Dang
Sjoukje Kuijper
Elisabetta Walters
Mareli Claassens
Dick van Soolingen
Gabriel Vivo-Truyols
Hans-Gerd Janssen
Arend H J Kolk
Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.
description Tuberculosis (TB) remains a major international health problem. Rapid differentiation of Mycobacterium tuberculosis complex (MTB) from non-tuberculous mycobacteria (NTM) is critical for decisions regarding patient management and choice of therapeutic regimen. Recently we developed a 20-compound model to distinguish between MTB and NTM. It is based on thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry and partial least square discriminant analysis. Here we report the validation of this model with two independent sample sets, one consisting of 39 MTB and 17 NTM isolates from the Netherlands, the other comprising 103 isolates (91 MTB and 12 NTM) from Stellenbosch, Cape Town, South Africa. All the MTB strains in the 56 Dutch samples were correctly identified and the model had a sensitivity of 100% and a specificity of 94%. For the South African samples the model had a sensitivity of 88% and specificity of 100%. Based on our model, we have developed a new decision-tree that allows the differentiation of MTB from NTM with 100% accuracy. Encouraged by these findings we will proceed with the development of a simple, rapid, affordable, high-throughput test to identify MTB directly in sputum.
format article
author Ngoc A Dang
Sjoukje Kuijper
Elisabetta Walters
Mareli Claassens
Dick van Soolingen
Gabriel Vivo-Truyols
Hans-Gerd Janssen
Arend H J Kolk
author_facet Ngoc A Dang
Sjoukje Kuijper
Elisabetta Walters
Mareli Claassens
Dick van Soolingen
Gabriel Vivo-Truyols
Hans-Gerd Janssen
Arend H J Kolk
author_sort Ngoc A Dang
title Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.
title_short Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.
title_full Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.
title_fullStr Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.
title_full_unstemmed Validation of biomarkers for distinguishing Mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.
title_sort validation of biomarkers for distinguishing mycobacterium tuberculosis from non-tuberculous mycobacteria using gas chromatography-mass spectrometry and chemometrics.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/0c373b53dde745b3915759e638327ef9
work_keys_str_mv AT ngocadang validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT sjoukjekuijper validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT elisabettawalters validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT mareliclaassens validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT dickvansoolingen validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT gabrielvivotruyols validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT hansgerdjanssen validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
AT arendhjkolk validationofbiomarkersfordistinguishingmycobacteriumtuberculosisfromnontuberculousmycobacteriausinggaschromatographymassspectrometryandchemometrics
_version_ 1718421245094002688