Estimated glomerular filtration rate equations in people of self-reported black ethnicity in the United Kingdom: Inappropriate adjustment for ethnicity may lead to reduced access to care.

Assessment in African populations suggest adjustment for ethnicity in estimated glomerular filtration rate (eGFR) equations derived from African Americans lead to overestimation of GFR and failure to determine severity in chronic kidney disease (CKD). However, studies in African Europeans are limite...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rouvick M Gama, Amanda Clery, Kathryn Griffiths, Neil Heraghty, Adrien M Peters, Kieran Palmer, Henry Kibble, Royce P Vincent, Claire C Sharpe, Hugh Cairns, Kate Bramham
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0c3cf80797844aeebfdd5705241fa2fe
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Assessment in African populations suggest adjustment for ethnicity in estimated glomerular filtration rate (eGFR) equations derived from African Americans lead to overestimation of GFR and failure to determine severity in chronic kidney disease (CKD). However, studies in African Europeans are limited. We aimed to assess accuracy of eGFR equations, with and without ethnicity adjustment compared with measured GFR in people of Black ethnicity in the United Kingdom. Performance of MDRD, CKD-EPI (with and without ethnicity adjustment), Full Age Spectrum (FAS), revised Lund Malmö (LM Revised), and European Kidney Function Consortium (EKFC) eGFR equations were assessed compared to 51Cr-EDTA GFR studies extracted from hospital databases. Participants with albumin <30g/l, liver disease, <18 years, of non-Black or non-White self-reported ethnicity were excluded. Agreement was assessed by bias, precision and 30%-accuracy and was stratified for ethnicity and GFR. 1888 51Cr-EDTA studies were included (Mean age-53.7yrs; 43.6% female; 14.1% Black ethnicity). Compared to White participants, eGFR-MDRD and eGFR-CKD-EPI equations in Black participants significantly overestimated GFR (bias 20.3 and 19.7 ml/min/1.73m2 respectively, p<0.001). Disregarding the ethnicity adjustment significantly improved GFR estimates for Black participants (bias 6.7 and 2.4ml/min/1.73m2 for eGFR-MDRD and eGFR-CKD-EPI respectively, p<0.001). The LM Revised equation had the smallest bias for both White and Black participants (5.8ml and -1.1ml/min/1.73m2 respectively). 30%-accuracy was superior for GFR≥60ml/min/1.73m2 compared to <60ml/min/1.73m2 using eGFR-CKD-EPI equation for both White and Black participants (p<0.001). Multivariate regression methodology with adjustment for age, sex and log(serum creatinine) in the cohort yielded an ethnicity coefficient of 1.018 (95% CI: 1.009-1.027). Overestimation of measured GFR with eGFR equations using ethnicity adjustment factors may lead to reduced CKD diagnosis and under-recognition of severity in people of Black ethnicity. Our findings suggest that ethnicity adjustment for GFR estimation in non-African Americans may not be appropriate for use in people of Black ethnicity in the UK.