Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications

Abstract Interaction of relativistic electron beams with high power lasers can both serve as a secondary light source and as a novel diagnostic tool for various beam parameters. For both applications, it is important to understand the dynamics of the inverse Compton scattering mechanism and the depe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: J. M. Krämer, A. Jochmann, M. Budde, M. Bussmann, J. P. Couperus, T. E. Cowan, A. Debus, A. Köhler, M. Kuntzsch, A. Laso García, U. Lehnert, P. Michel, R. Pausch, O. Zarini, U. Schramm, A. Irman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0c401fd5970e46f3902cdfac46b00a70
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0c401fd5970e46f3902cdfac46b00a70
record_format dspace
spelling oai:doaj.org-article:0c401fd5970e46f3902cdfac46b00a702021-12-02T15:07:51ZMaking spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications10.1038/s41598-018-19546-02045-2322https://doaj.org/article/0c401fd5970e46f3902cdfac46b00a702018-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-19546-0https://doaj.org/toc/2045-2322Abstract Interaction of relativistic electron beams with high power lasers can both serve as a secondary light source and as a novel diagnostic tool for various beam parameters. For both applications, it is important to understand the dynamics of the inverse Compton scattering mechanism and the dependence of the scattered light’s spectral properties on the interacting laser and electron beam parameters. Measurements are easily misinterpreted due to the complex interplay of the interaction parameters. Here we report the potential of inverse Compton scattering as an advanced diagnostic tool by investigating two of the most influential interaction parameters, namely the laser intensity and the electron beam emittance. Established scaling laws for the spectral bandwidth and redshift of the mean scattered photon energy are refined. This allows for a quantitatively well matching prediction of the spectral shape. Driving the interaction to a nonlinear regime, we spectrally resolve the rise of higher harmonic radiation with increasing laser intensity. Unprecedented agreement with 3D radiation simulations is found, showing the good control and characterization of the interaction. The findings advance the interpretation of inverse Compton scattering measurements into a diagnostic tool for electron beams from laser plasma acceleration.J. M. KrämerA. JochmannM. BuddeM. BussmannJ. P. CouperusT. E. CowanA. DebusA. KöhlerM. KuntzschA. Laso GarcíaU. LehnertP. MichelR. PauschO. ZariniU. SchrammA. IrmanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-11 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
J. M. Krämer
A. Jochmann
M. Budde
M. Bussmann
J. P. Couperus
T. E. Cowan
A. Debus
A. Köhler
M. Kuntzsch
A. Laso García
U. Lehnert
P. Michel
R. Pausch
O. Zarini
U. Schramm
A. Irman
Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications
description Abstract Interaction of relativistic electron beams with high power lasers can both serve as a secondary light source and as a novel diagnostic tool for various beam parameters. For both applications, it is important to understand the dynamics of the inverse Compton scattering mechanism and the dependence of the scattered light’s spectral properties on the interacting laser and electron beam parameters. Measurements are easily misinterpreted due to the complex interplay of the interaction parameters. Here we report the potential of inverse Compton scattering as an advanced diagnostic tool by investigating two of the most influential interaction parameters, namely the laser intensity and the electron beam emittance. Established scaling laws for the spectral bandwidth and redshift of the mean scattered photon energy are refined. This allows for a quantitatively well matching prediction of the spectral shape. Driving the interaction to a nonlinear regime, we spectrally resolve the rise of higher harmonic radiation with increasing laser intensity. Unprecedented agreement with 3D radiation simulations is found, showing the good control and characterization of the interaction. The findings advance the interpretation of inverse Compton scattering measurements into a diagnostic tool for electron beams from laser plasma acceleration.
format article
author J. M. Krämer
A. Jochmann
M. Budde
M. Bussmann
J. P. Couperus
T. E. Cowan
A. Debus
A. Köhler
M. Kuntzsch
A. Laso García
U. Lehnert
P. Michel
R. Pausch
O. Zarini
U. Schramm
A. Irman
author_facet J. M. Krämer
A. Jochmann
M. Budde
M. Bussmann
J. P. Couperus
T. E. Cowan
A. Debus
A. Köhler
M. Kuntzsch
A. Laso García
U. Lehnert
P. Michel
R. Pausch
O. Zarini
U. Schramm
A. Irman
author_sort J. M. Krämer
title Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications
title_short Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications
title_full Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications
title_fullStr Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications
title_full_unstemmed Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications
title_sort making spectral shape measurements in inverse compton scattering a tool for advanced diagnostic applications
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/0c401fd5970e46f3902cdfac46b00a70
work_keys_str_mv AT jmkramer makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT ajochmann makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT mbudde makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT mbussmann makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT jpcouperus makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT tecowan makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT adebus makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT akohler makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT mkuntzsch makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT alasogarcia makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT ulehnert makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT pmichel makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT rpausch makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT ozarini makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT uschramm makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
AT airman makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications
_version_ 1718388365153271808