Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications
Abstract Interaction of relativistic electron beams with high power lasers can both serve as a secondary light source and as a novel diagnostic tool for various beam parameters. For both applications, it is important to understand the dynamics of the inverse Compton scattering mechanism and the depe...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c401fd5970e46f3902cdfac46b00a70 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0c401fd5970e46f3902cdfac46b00a70 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0c401fd5970e46f3902cdfac46b00a702021-12-02T15:07:51ZMaking spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications10.1038/s41598-018-19546-02045-2322https://doaj.org/article/0c401fd5970e46f3902cdfac46b00a702018-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-19546-0https://doaj.org/toc/2045-2322Abstract Interaction of relativistic electron beams with high power lasers can both serve as a secondary light source and as a novel diagnostic tool for various beam parameters. For both applications, it is important to understand the dynamics of the inverse Compton scattering mechanism and the dependence of the scattered light’s spectral properties on the interacting laser and electron beam parameters. Measurements are easily misinterpreted due to the complex interplay of the interaction parameters. Here we report the potential of inverse Compton scattering as an advanced diagnostic tool by investigating two of the most influential interaction parameters, namely the laser intensity and the electron beam emittance. Established scaling laws for the spectral bandwidth and redshift of the mean scattered photon energy are refined. This allows for a quantitatively well matching prediction of the spectral shape. Driving the interaction to a nonlinear regime, we spectrally resolve the rise of higher harmonic radiation with increasing laser intensity. Unprecedented agreement with 3D radiation simulations is found, showing the good control and characterization of the interaction. The findings advance the interpretation of inverse Compton scattering measurements into a diagnostic tool for electron beams from laser plasma acceleration.J. M. KrämerA. JochmannM. BuddeM. BussmannJ. P. CouperusT. E. CowanA. DebusA. KöhlerM. KuntzschA. Laso GarcíaU. LehnertP. MichelR. PauschO. ZariniU. SchrammA. IrmanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-11 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q J. M. Krämer A. Jochmann M. Budde M. Bussmann J. P. Couperus T. E. Cowan A. Debus A. Köhler M. Kuntzsch A. Laso García U. Lehnert P. Michel R. Pausch O. Zarini U. Schramm A. Irman Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications |
description |
Abstract Interaction of relativistic electron beams with high power lasers can both serve as a secondary light source and as a novel diagnostic tool for various beam parameters. For both applications, it is important to understand the dynamics of the inverse Compton scattering mechanism and the dependence of the scattered light’s spectral properties on the interacting laser and electron beam parameters. Measurements are easily misinterpreted due to the complex interplay of the interaction parameters. Here we report the potential of inverse Compton scattering as an advanced diagnostic tool by investigating two of the most influential interaction parameters, namely the laser intensity and the electron beam emittance. Established scaling laws for the spectral bandwidth and redshift of the mean scattered photon energy are refined. This allows for a quantitatively well matching prediction of the spectral shape. Driving the interaction to a nonlinear regime, we spectrally resolve the rise of higher harmonic radiation with increasing laser intensity. Unprecedented agreement with 3D radiation simulations is found, showing the good control and characterization of the interaction. The findings advance the interpretation of inverse Compton scattering measurements into a diagnostic tool for electron beams from laser plasma acceleration. |
format |
article |
author |
J. M. Krämer A. Jochmann M. Budde M. Bussmann J. P. Couperus T. E. Cowan A. Debus A. Köhler M. Kuntzsch A. Laso García U. Lehnert P. Michel R. Pausch O. Zarini U. Schramm A. Irman |
author_facet |
J. M. Krämer A. Jochmann M. Budde M. Bussmann J. P. Couperus T. E. Cowan A. Debus A. Köhler M. Kuntzsch A. Laso García U. Lehnert P. Michel R. Pausch O. Zarini U. Schramm A. Irman |
author_sort |
J. M. Krämer |
title |
Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications |
title_short |
Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications |
title_full |
Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications |
title_fullStr |
Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications |
title_full_unstemmed |
Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications |
title_sort |
making spectral shape measurements in inverse compton scattering a tool for advanced diagnostic applications |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/0c401fd5970e46f3902cdfac46b00a70 |
work_keys_str_mv |
AT jmkramer makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT ajochmann makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT mbudde makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT mbussmann makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT jpcouperus makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT tecowan makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT adebus makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT akohler makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT mkuntzsch makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT alasogarcia makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT ulehnert makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT pmichel makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT rpausch makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT ozarini makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT uschramm makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications AT airman makingspectralshapemeasurementsininversecomptonscatteringatoolforadvanceddiagnosticapplications |
_version_ |
1718388365153271808 |