Robust feature space separation for deep convolutional neural network training

Abstract This paper introduces two deep convolutional neural network training techniques that lead to more robust feature subspace separation in comparison to traditional training. Assume that dataset has M labels. The first method creates M deep convolutional neural networks called $$\{\text {DCNN}...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ali Sekmen, Mustafa Parlaktuna, Ayad Abdul-Malek, Erdem Erdemir, Ahmet Bugra Koku
Formato: article
Lenguaje:EN
Publicado: Springer 2021
Materias:
Acceso en línea:https://doaj.org/article/0c4975ea7511433cbff1e6d106499b8e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract This paper introduces two deep convolutional neural network training techniques that lead to more robust feature subspace separation in comparison to traditional training. Assume that dataset has M labels. The first method creates M deep convolutional neural networks called $$\{\text {DCNN}_i\}_{i=1}^{M}$$ { DCNN i } i = 1 M . Each of the networks $$\text {DCNN}_i$$ DCNN i is composed of a convolutional neural network ( $$\text {CNN}_i$$ CNN i ) and a fully connected neural network ( $$\text {FCNN}_i$$ FCNN i ). In training, a set of projection matrices $$\{\mathbf {P}_i\}_{i=1}^M$$ { P i } i = 1 M are created and adaptively updated as representations for feature subspaces $$\{\mathcal {S}_i\}_{i=1}^M$$ { S i } i = 1 M . A rejection value is computed for each training based on its projections on feature subspaces. Each $$\text {FCNN}_i$$ FCNN i acts as a binary classifier with a cost function whose main parameter is rejection values. A threshold value $$t_i$$ t i is determined for $$i^{th}$$ i th network $$\text {DCNN}_i$$ DCNN i . A testing strategy utilizing $$\{t_i\}_{i=1}^M$$ { t i } i = 1 M is also introduced. The second method creates a single DCNN and it computes a cost function whose parameters depend on subspace separations using the geodesic distance on the Grasmannian manifold of subspaces $$\mathcal {S}_i$$ S i and the sum of all remaining subspaces $$\{\mathcal {S}_j\}_{j=1,j\ne i}^M$$ { S j } j = 1 , j ≠ i M . The proposed methods are tested using multiple network topologies. It is shown that while the first method works better for smaller networks, the second method performs better for complex architectures.