A divided and prioritized experience replay approach for streaming regression
In the streaming learning setting, an agent is presented with a data stream on which to learn from in an online fashion. A common problem is catastrophic forgetting of old knowledge due to updates to the model. Mitigating catastrophic forgetting has received a lot of attention, and a variety of meth...
Enregistré dans:
Auteurs principaux: | Mikkel Leite Arnø, John-Morten Godhavn, Ole Morten Aamo |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0c6548a53bbf4b5aa7205376e59d3d02 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
SPACE: Structured Compression and Sharing of Representational Space for Continual Learning
par: Gobinda Saha, et autres
Publié: (2021) -
T-DFNN: An Incremental Learning Algorithm for Intrusion Detection Systems
par: Mahendra Data, et autres
Publié: (2021) -
A-iLearn: An adaptive incremental learning model for spoof fingerprint detection
par: Shivang Agarwal, et autres
Publié: (2022) -
Learning to stream and streaming to learn
par: Stevie Prickett
Publié: (2021) -
Combining Accuracy and Plasticity in Convolutional Neural Networks Based on Resistive Memory Arrays for Autonomous Learning
par: Stefano Bianchi, et autres
Publié: (2021)