Automated segmentation of endometrial cancer on MR images using deep learning

Abstract Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relev...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Erlend Hodneland, Julie A. Dybvik, Kari S. Wagner-Larsen, Veronika Šoltészová, Antonella Z. Munthe-Kaas, Kristine E. Fasmer, Camilla Krakstad, Arvid Lundervold, Alexander S. Lundervold, Øyvind Salvesen, Bradley J. Erickson, Ingfrid Haldorsen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0c6abe276d154ef9bbcfb07bbc143dfb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, $$p = 0.06$$ p = 0.06 ). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, $$p=0.08$$ p = 0.08 , $$p=0.60$$ p = 0.60 , and $$p=0.05$$ p = 0.05 ). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.