Automated segmentation of endometrial cancer on MR images using deep learning

Abstract Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relev...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Erlend Hodneland, Julie A. Dybvik, Kari S. Wagner-Larsen, Veronika Šoltészová, Antonella Z. Munthe-Kaas, Kristine E. Fasmer, Camilla Krakstad, Arvid Lundervold, Alexander S. Lundervold, Øyvind Salvesen, Bradley J. Erickson, Ingfrid Haldorsen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0c6abe276d154ef9bbcfb07bbc143dfb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0c6abe276d154ef9bbcfb07bbc143dfb
record_format dspace
spelling oai:doaj.org-article:0c6abe276d154ef9bbcfb07bbc143dfb2021-12-02T15:12:55ZAutomated segmentation of endometrial cancer on MR images using deep learning10.1038/s41598-020-80068-92045-2322https://doaj.org/article/0c6abe276d154ef9bbcfb07bbc143dfb2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80068-9https://doaj.org/toc/2045-2322Abstract Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, $$p = 0.06$$ p = 0.06 ). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, $$p=0.08$$ p = 0.08 , $$p=0.60$$ p = 0.60 , and $$p=0.05$$ p = 0.05 ). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.Erlend HodnelandJulie A. DybvikKari S. Wagner-LarsenVeronika ŠoltészováAntonella Z. Munthe-KaasKristine E. FasmerCamilla KrakstadArvid LundervoldAlexander S. LundervoldØyvind SalvesenBradley J. EricksonIngfrid HaldorsenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Erlend Hodneland
Julie A. Dybvik
Kari S. Wagner-Larsen
Veronika Šoltészová
Antonella Z. Munthe-Kaas
Kristine E. Fasmer
Camilla Krakstad
Arvid Lundervold
Alexander S. Lundervold
Øyvind Salvesen
Bradley J. Erickson
Ingfrid Haldorsen
Automated segmentation of endometrial cancer on MR images using deep learning
description Abstract Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, $$p = 0.06$$ p = 0.06 ). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, $$p=0.08$$ p = 0.08 , $$p=0.60$$ p = 0.60 , and $$p=0.05$$ p = 0.05 ). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.
format article
author Erlend Hodneland
Julie A. Dybvik
Kari S. Wagner-Larsen
Veronika Šoltészová
Antonella Z. Munthe-Kaas
Kristine E. Fasmer
Camilla Krakstad
Arvid Lundervold
Alexander S. Lundervold
Øyvind Salvesen
Bradley J. Erickson
Ingfrid Haldorsen
author_facet Erlend Hodneland
Julie A. Dybvik
Kari S. Wagner-Larsen
Veronika Šoltészová
Antonella Z. Munthe-Kaas
Kristine E. Fasmer
Camilla Krakstad
Arvid Lundervold
Alexander S. Lundervold
Øyvind Salvesen
Bradley J. Erickson
Ingfrid Haldorsen
author_sort Erlend Hodneland
title Automated segmentation of endometrial cancer on MR images using deep learning
title_short Automated segmentation of endometrial cancer on MR images using deep learning
title_full Automated segmentation of endometrial cancer on MR images using deep learning
title_fullStr Automated segmentation of endometrial cancer on MR images using deep learning
title_full_unstemmed Automated segmentation of endometrial cancer on MR images using deep learning
title_sort automated segmentation of endometrial cancer on mr images using deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0c6abe276d154ef9bbcfb07bbc143dfb
work_keys_str_mv AT erlendhodneland automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT julieadybvik automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT kariswagnerlarsen automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT veronikasolteszova automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT antonellazmunthekaas automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT kristineefasmer automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT camillakrakstad automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT arvidlundervold automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT alexanderslundervold automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT øyvindsalvesen automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT bradleyjerickson automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
AT ingfridhaldorsen automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning
_version_ 1718387612733931520