Automated segmentation of endometrial cancer on MR images using deep learning
Abstract Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relev...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c6abe276d154ef9bbcfb07bbc143dfb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0c6abe276d154ef9bbcfb07bbc143dfb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0c6abe276d154ef9bbcfb07bbc143dfb2021-12-02T15:12:55ZAutomated segmentation of endometrial cancer on MR images using deep learning10.1038/s41598-020-80068-92045-2322https://doaj.org/article/0c6abe276d154ef9bbcfb07bbc143dfb2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-80068-9https://doaj.org/toc/2045-2322Abstract Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, $$p = 0.06$$ p = 0.06 ). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, $$p=0.08$$ p = 0.08 , $$p=0.60$$ p = 0.60 , and $$p=0.05$$ p = 0.05 ). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer.Erlend HodnelandJulie A. DybvikKari S. Wagner-LarsenVeronika ŠoltészováAntonella Z. Munthe-KaasKristine E. FasmerCamilla KrakstadArvid LundervoldAlexander S. LundervoldØyvind SalvesenBradley J. EricksonIngfrid HaldorsenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Erlend Hodneland Julie A. Dybvik Kari S. Wagner-Larsen Veronika Šoltészová Antonella Z. Munthe-Kaas Kristine E. Fasmer Camilla Krakstad Arvid Lundervold Alexander S. Lundervold Øyvind Salvesen Bradley J. Erickson Ingfrid Haldorsen Automated segmentation of endometrial cancer on MR images using deep learning |
description |
Abstract Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relevant for better individualization and optimization of treatment. We apply a convolutional neural network for automatic tumor segmentation in endometrial cancer patients, enabling automated extraction of tumor texture parameters and tumor volume. The network was trained, validated and tested on a cohort of 139 endometrial cancer patients based on preoperative pelvic imaging. The algorithm was able to retrieve tumor volumes comparable to human expert level (likelihood-ratio test, $$p = 0.06$$ p = 0.06 ). The network was also able to provide a set of segmentation masks with human agreement not different from inter-rater agreement of human experts (Wilcoxon signed rank test, $$p=0.08$$ p = 0.08 , $$p=0.60$$ p = 0.60 , and $$p=0.05$$ p = 0.05 ). An automatic tool for tumor segmentation in endometrial cancer patients enables automated extraction of tumor volume and whole-volume tumor texture features. This approach represents a promising method for automatic radiomic tumor profiling with potential relevance for better prognostication and individualization of therapeutic strategy in endometrial cancer. |
format |
article |
author |
Erlend Hodneland Julie A. Dybvik Kari S. Wagner-Larsen Veronika Šoltészová Antonella Z. Munthe-Kaas Kristine E. Fasmer Camilla Krakstad Arvid Lundervold Alexander S. Lundervold Øyvind Salvesen Bradley J. Erickson Ingfrid Haldorsen |
author_facet |
Erlend Hodneland Julie A. Dybvik Kari S. Wagner-Larsen Veronika Šoltészová Antonella Z. Munthe-Kaas Kristine E. Fasmer Camilla Krakstad Arvid Lundervold Alexander S. Lundervold Øyvind Salvesen Bradley J. Erickson Ingfrid Haldorsen |
author_sort |
Erlend Hodneland |
title |
Automated segmentation of endometrial cancer on MR images using deep learning |
title_short |
Automated segmentation of endometrial cancer on MR images using deep learning |
title_full |
Automated segmentation of endometrial cancer on MR images using deep learning |
title_fullStr |
Automated segmentation of endometrial cancer on MR images using deep learning |
title_full_unstemmed |
Automated segmentation of endometrial cancer on MR images using deep learning |
title_sort |
automated segmentation of endometrial cancer on mr images using deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0c6abe276d154ef9bbcfb07bbc143dfb |
work_keys_str_mv |
AT erlendhodneland automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT julieadybvik automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT kariswagnerlarsen automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT veronikasolteszova automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT antonellazmunthekaas automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT kristineefasmer automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT camillakrakstad automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT arvidlundervold automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT alexanderslundervold automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT øyvindsalvesen automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT bradleyjerickson automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning AT ingfridhaldorsen automatedsegmentationofendometrialcanceronmrimagesusingdeeplearning |
_version_ |
1718387612733931520 |