Automated segmentation of endometrial cancer on MR images using deep learning
Abstract Preoperative MR imaging in endometrial cancer patients provides valuable information on local tumor extent, which routinely guides choice of surgical procedure and adjuvant therapy. Furthermore, whole-volume tumor analyses of MR images may provide radiomic tumor signatures potentially relev...
Guardado en:
Autores principales: | Erlend Hodneland, Julie A. Dybvik, Kari S. Wagner-Larsen, Veronika Šoltészová, Antonella Z. Munthe-Kaas, Kristine E. Fasmer, Camilla Krakstad, Arvid Lundervold, Alexander S. Lundervold, Øyvind Salvesen, Bradley J. Erickson, Ingfrid Haldorsen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c6abe276d154ef9bbcfb07bbc143dfb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cognitive and MRI trajectories for prediction of Alzheimer’s disease
por: Samaneh A. Mofrad, et al.
Publicado: (2021) -
A Gene Signature Identifying CIN3 Regression and Cervical Cancer Survival
por: Mari K. Halle, et al.
Publicado: (2021) -
Noninvasive assessment of endometrial fibrosis in patients with intravoxel incoherent motion MR imaging
por: Qing Hu, et al.
Publicado: (2021) -
Risk Stratification of Endometrial Cancer Patients: FIGO Stage, Biomarkers and Molecular Classification
por: Jenneke C. Kasius, et al.
Publicado: (2021) -
A self-guided Internet-delivered intervention for adults with ADHD: a protocol for a randomized controlled trial
por: Robin Maria Francisca Kenter, et al.
Publicado: (2021)