MH UNet: A Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation
UNet and its variations achieve state-of-the-art performances in medical image segmentation. In end-to-end learning, the training with high-resolution medical images achieves higher accuracy for medical image segmentation. However, the network depth, a massive number of parameters, and low receptive...
Guardado en:
Autores principales: | Parvez Ahmad, Hai Jin, Roobaea Alroobaea, Saqib Qamar, Ran Zheng, Fady Alnajjar, Fathia Aboudi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c79ab71e3b744aea7085540d141fd80 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Dense Encoder–Decoder Network with Feedback Connections for Pan-Sharpening
por: Weisheng Li, et al.
Publicado: (2021) -
Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture
por: Anuja Arora, et al.
Publicado: (2021) -
Multi-Hop Question Generation Using Hierarchical Encoding-Decoding and Context Switch Mechanism
por: Tianbo Ji, et al.
Publicado: (2021) -
A 3D Reconstruction Framework of Buildings Using Single Off-Nadir Satellite Image
por: Chunhui Zhao, et al.
Publicado: (2021) -
Neural tracking in infants – An analytical tool for multisensory social processing in development
por: Sarah Jessen, et al.
Publicado: (2021)