Using deep learning to predict temporomandibular joint disc perforation based on magnetic resonance imaging
Abstract The goal of this study was to develop a deep learning-based algorithm to predict temporomandibular joint (TMJ) disc perforation based on the findings of magnetic resonance imaging (MRI) and to validate its performance through comparison with previously reported results. The study objects we...
Guardado en:
Autores principales: | Jae-Young Kim, Dongwook Kim, Kug Jin Jeon, Hwiyoung Kim, Jong-Ki Huh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c831ad0ec5346e79d1d58c39859400a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Diagnostic value of dynamic magnetic resonance imaging of temporomandibular joint dysfunction
por: Thomas J. Vogl, et al.
Publicado: (2021) -
Temporomandibular Joint Magnetic Resonance Imaging Analysis in Adults with Steinert's Myotonic Dystrophy
por: Guimarães,Antonio Sergio, et al.
Publicado: (2013) -
Percentage of Lateral Pterygoid Muscle Inserted in the Disc of Human Temporomandibular Joint
por: Tapia Contreras,Jorge, et al.
Publicado: (2011) -
Low Intensity Laser Therapy in Disc Derangement Disorders of Temporomandibular Joint: A Review Article
por: Khan,Mubeen, et al.
Publicado: (2013) -
Artificial intelligence in detecting temporomandibular joint osteoarthritis on orthopantomogram
por: Eunhye Choi, et al.
Publicado: (2021)