Hölder Parameterization of Iterated Function Systems and a Self-Affine Phenomenon
We investigate the Hölder geometry of curves generated by iterated function systems (IFS) in a complete metric space. A theorem of Hata from 1985 asserts that every connected attractor of an IFS is locally connected and path-connected. We give a quantitative strengthening of Hata’s theorem. First we...
Guardado en:
Autores principales: | Badger Matthew, Vellis Vyron |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c87905a11d6469086eb3426c0600bc0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down
por: Joseph Matthieu, et al.
Publicado: (2017) -
On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on ℝN
por: He Jia Wei, et al.
Publicado: (2021) -
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
por: Menglong Su
Publicado: (2021) -
Convergence on Composite Iterative Schemes for Nonexpansive Mappings in Banach Spaces
por: Jong Soo Jung
Publicado: (2008) -
Convergence Comparison of Several Iteration Algorithms for the Common Fixed Point Problems
por: Yisheng Song, et al.
Publicado: (2009)