Principled approach to the selection of the embedding dimension of networks

Network embedding is a machine learning technique for construction of low-dimensional representations of large networks. Gu et al. propose a method for the identification of an optimal embedding dimension for the encoding of network structural information inspired by natural language processing.

Guardado en:
Detalles Bibliográficos
Autores principales: Weiwei Gu, Aditya Tandon, Yong-Yeol Ahn, Filippo Radicchi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/0c8b312268dc4e2b98ab779364193bb3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0c8b312268dc4e2b98ab779364193bb3
record_format dspace
spelling oai:doaj.org-article:0c8b312268dc4e2b98ab779364193bb32021-12-02T17:40:29ZPrincipled approach to the selection of the embedding dimension of networks10.1038/s41467-021-23795-52041-1723https://doaj.org/article/0c8b312268dc4e2b98ab779364193bb32021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23795-5https://doaj.org/toc/2041-1723Network embedding is a machine learning technique for construction of low-dimensional representations of large networks. Gu et al. propose a method for the identification of an optimal embedding dimension for the encoding of network structural information inspired by natural language processing.Weiwei GuAditya TandonYong-Yeol AhnFilippo RadicchiNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Weiwei Gu
Aditya Tandon
Yong-Yeol Ahn
Filippo Radicchi
Principled approach to the selection of the embedding dimension of networks
description Network embedding is a machine learning technique for construction of low-dimensional representations of large networks. Gu et al. propose a method for the identification of an optimal embedding dimension for the encoding of network structural information inspired by natural language processing.
format article
author Weiwei Gu
Aditya Tandon
Yong-Yeol Ahn
Filippo Radicchi
author_facet Weiwei Gu
Aditya Tandon
Yong-Yeol Ahn
Filippo Radicchi
author_sort Weiwei Gu
title Principled approach to the selection of the embedding dimension of networks
title_short Principled approach to the selection of the embedding dimension of networks
title_full Principled approach to the selection of the embedding dimension of networks
title_fullStr Principled approach to the selection of the embedding dimension of networks
title_full_unstemmed Principled approach to the selection of the embedding dimension of networks
title_sort principled approach to the selection of the embedding dimension of networks
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0c8b312268dc4e2b98ab779364193bb3
work_keys_str_mv AT weiweigu principledapproachtotheselectionoftheembeddingdimensionofnetworks
AT adityatandon principledapproachtotheselectionoftheembeddingdimensionofnetworks
AT yongyeolahn principledapproachtotheselectionoftheembeddingdimensionofnetworks
AT filipporadicchi principledapproachtotheselectionoftheembeddingdimensionofnetworks
_version_ 1718379746795978752