Principled approach to the selection of the embedding dimension of networks
Network embedding is a machine learning technique for construction of low-dimensional representations of large networks. Gu et al. propose a method for the identification of an optimal embedding dimension for the encoding of network structural information inspired by natural language processing.
Guardado en:
Autores principales: | Weiwei Gu, Aditya Tandon, Yong-Yeol Ahn, Filippo Radicchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0c8b312268dc4e2b98ab779364193bb3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimal percolation on multiplex networks
por: Saeed Osat, et al.
Publicado: (2017) -
MultiVERSE: a multiplex and multiplex-heterogeneous network embedding approach
por: Léo Pio-Lopez, et al.
Publicado: (2021) -
Flexible model of network embedding
por: Juan Fernández-Gracia, et al.
Publicado: (2019) -
Making personnel selection smarter through word embeddings: A graph-based approach
por: Nikos Kanakaris, et al.
Publicado: (2022) -
Optimisation of the coalescent hyperbolic embedding of complex networks
por: Bianka Kovács, et al.
Publicado: (2021)