A systematic comparison of supervised classifiers.
Pattern recognition has been employed in a myriad of industrial, commercial and academic applications. Many techniques have been devised to tackle such a diversity of applications. Despite the long tradition of pattern recognition research, there is no technique that yields the best classification i...
Enregistré dans:
Auteurs principaux: | Diego Raphael Amancio, Cesar Henrique Comin, Dalcimar Casanova, Gonzalo Travieso, Odemir Martinez Bruno, Francisco Aparecido Rodrigues, Luciano da Fontoura Costa |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2014
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0c90c70b459543248ed6e41d5f6df4dd |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The effects of supervision on three different exercises modalities (supervised vs. home vs. supervised+home) in older adults: Randomized controlled trial protocol.
par: Sabrine Nayara Costa, et autres
Publié: (2021) -
The effects of supervision on three different exercises modalities (supervised vs. home vs. supervised+home) in older adults: Randomized controlled trial protocol
par: Sabrine Nayara Costa, et autres
Publié: (2021) -
Comparison of Machine Learning Classifiers for Reducing Fitness Evaluations of Structural Optimization
par: Tran-Hieu Nguyen, et autres
Publié: (2021) -
Comparison of shape analysis methods for Guinardia citricarpa ascospore characterization
par: Pazoti,Mário Augusto, et autres
Publié: (2005) -
Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography
par: Grzegorz Kłosowski, et autres
Publié: (2021)