Oral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy

ABSTRACT Despite evidence of a chronic inflammatory phenotype in people living with HIV (PLWH) on antiretroviral therapy (ART), the role of oral microbiota in chronic immune activation has not been fully explored. We aimed to determine the relationship between oral and gut microbiome diversity and c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Medini K. Annavajhala, Sabrina D. Khan, Sean B. Sullivan, Jayesh Shah, Lauren Pass, Karolina Kister, Heather Kunen, Victor Chiang, Gwennaëlle C. Monnot, Christopher L. Ricupero, Rebecca A. Mazur, Peter Gordon, Annemieke de Jong, Sunil Wadhwa, Michael T. Yin, Ryan T. Demmer, Anne-Catrin Uhlemann
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
HIV
Acceso en línea:https://doaj.org/article/0cb9fe476054456491e7cf070fe89589
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0cb9fe476054456491e7cf070fe89589
record_format dspace
spelling oai:doaj.org-article:0cb9fe476054456491e7cf070fe895892021-11-15T15:27:53ZOral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy10.1128/mSphere.00798-192379-5042https://doaj.org/article/0cb9fe476054456491e7cf070fe895892020-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00798-19https://doaj.org/toc/2379-5042ABSTRACT Despite evidence of a chronic inflammatory phenotype in people living with HIV (PLWH) on antiretroviral therapy (ART), the role of oral microbiota in chronic immune activation has not been fully explored. We aimed to determine the relationship between oral and gut microbiome diversity and chronic systemic inflammation in ART-treated PLWH with prevalent severe periodontitis, an inflammatory condition commonly associated with HIV infection. We assessed bacterial and fungal communities at oral and gastrointestinal sites in a cohort (n = 52) of primarily postmenopausal women on ART using 16S rRNA and internal transcribed spacer (ITS) sequencing and measured cellular and soluble markers of inflammation and immune dysfunction. Linear mixed-effect regression and differential abundance analyses were used to associate clinical characteristics and immunological markers with bacterial and fungal diversity and community composition. Bacterial α-diversity in plaque, saliva, and gut was associated with different immunological markers, while mycobial diversity was not associated with soluble or cellular biomarkers of immune stimulation or T cell dysfunction. Furthermore, lipopolysaccharide-positive (LPS+) bacteria previously linked to inflammatory outcomes were enriched at oral sites in patients with severe periodontitis. Fungal α-diversity was reduced in plaque from teeth with higher clinical attachment loss, a marker of periodontitis, and in saliva and plaque from patients with a history of AIDS. Our results show that both bacterial and fungal oral microbiome communities likely play a role in chronic systemic immune activation in PLWH. Thus, interventions targeting both inflammation and the microbiome, particularly in the oral cavity, may be necessary to reduce chronic immune dysregulation in patients with HIV. IMPORTANCE A feedback loop between dysbiotic gut microbiota, increased translocation of microbial products such as lipopolysaccharide, and inflammation has been hypothesized to cause immune system dysfunction in early HIV infection. However, despite evidence of a chronic inflammatory phenotype in patients on antiretroviral therapy (ART), the role of oral microbiota in systemic immune activation and the relationship between oral and gut bacterial and fungal diversity have not been explored. Our study suggests a crucial role for oral bacterial and fungal communities in long-term systemic immune activation in patients on ART, expanding the current paradigm focused on gut bacteria. Our results indicate that interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-positive patients. More broadly, these findings can bolster general models of microbiome-mediated chronic systemic immune activation and aid the development of precise microbiota-targeted interventions to reverse chronic inflammation.Medini K. AnnavajhalaSabrina D. KhanSean B. SullivanJayesh ShahLauren PassKarolina KisterHeather KunenVictor ChiangGwennaëlle C. MonnotChristopher L. RicuperoRebecca A. MazurPeter GordonAnnemieke de JongSunil WadhwaMichael T. YinRyan T. DemmerAnne-Catrin UhlemannAmerican Society for Microbiologyarticleoral microbiomeantiretroviral therapymycobiomeimmune system activationHIVantiretroviral agentsMicrobiologyQR1-502ENmSphere, Vol 5, Iss 1 (2020)
institution DOAJ
collection DOAJ
language EN
topic oral microbiome
antiretroviral therapy
mycobiome
immune system activation
HIV
antiretroviral agents
Microbiology
QR1-502
spellingShingle oral microbiome
antiretroviral therapy
mycobiome
immune system activation
HIV
antiretroviral agents
Microbiology
QR1-502
Medini K. Annavajhala
Sabrina D. Khan
Sean B. Sullivan
Jayesh Shah
Lauren Pass
Karolina Kister
Heather Kunen
Victor Chiang
Gwennaëlle C. Monnot
Christopher L. Ricupero
Rebecca A. Mazur
Peter Gordon
Annemieke de Jong
Sunil Wadhwa
Michael T. Yin
Ryan T. Demmer
Anne-Catrin Uhlemann
Oral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy
description ABSTRACT Despite evidence of a chronic inflammatory phenotype in people living with HIV (PLWH) on antiretroviral therapy (ART), the role of oral microbiota in chronic immune activation has not been fully explored. We aimed to determine the relationship between oral and gut microbiome diversity and chronic systemic inflammation in ART-treated PLWH with prevalent severe periodontitis, an inflammatory condition commonly associated with HIV infection. We assessed bacterial and fungal communities at oral and gastrointestinal sites in a cohort (n = 52) of primarily postmenopausal women on ART using 16S rRNA and internal transcribed spacer (ITS) sequencing and measured cellular and soluble markers of inflammation and immune dysfunction. Linear mixed-effect regression and differential abundance analyses were used to associate clinical characteristics and immunological markers with bacterial and fungal diversity and community composition. Bacterial α-diversity in plaque, saliva, and gut was associated with different immunological markers, while mycobial diversity was not associated with soluble or cellular biomarkers of immune stimulation or T cell dysfunction. Furthermore, lipopolysaccharide-positive (LPS+) bacteria previously linked to inflammatory outcomes were enriched at oral sites in patients with severe periodontitis. Fungal α-diversity was reduced in plaque from teeth with higher clinical attachment loss, a marker of periodontitis, and in saliva and plaque from patients with a history of AIDS. Our results show that both bacterial and fungal oral microbiome communities likely play a role in chronic systemic immune activation in PLWH. Thus, interventions targeting both inflammation and the microbiome, particularly in the oral cavity, may be necessary to reduce chronic immune dysregulation in patients with HIV. IMPORTANCE A feedback loop between dysbiotic gut microbiota, increased translocation of microbial products such as lipopolysaccharide, and inflammation has been hypothesized to cause immune system dysfunction in early HIV infection. However, despite evidence of a chronic inflammatory phenotype in patients on antiretroviral therapy (ART), the role of oral microbiota in systemic immune activation and the relationship between oral and gut bacterial and fungal diversity have not been explored. Our study suggests a crucial role for oral bacterial and fungal communities in long-term systemic immune activation in patients on ART, expanding the current paradigm focused on gut bacteria. Our results indicate that interventions targeting both inflammation and microbial diversity are needed to mitigate oral inflammation-related comorbidities, particularly in HIV-positive patients. More broadly, these findings can bolster general models of microbiome-mediated chronic systemic immune activation and aid the development of precise microbiota-targeted interventions to reverse chronic inflammation.
format article
author Medini K. Annavajhala
Sabrina D. Khan
Sean B. Sullivan
Jayesh Shah
Lauren Pass
Karolina Kister
Heather Kunen
Victor Chiang
Gwennaëlle C. Monnot
Christopher L. Ricupero
Rebecca A. Mazur
Peter Gordon
Annemieke de Jong
Sunil Wadhwa
Michael T. Yin
Ryan T. Demmer
Anne-Catrin Uhlemann
author_facet Medini K. Annavajhala
Sabrina D. Khan
Sean B. Sullivan
Jayesh Shah
Lauren Pass
Karolina Kister
Heather Kunen
Victor Chiang
Gwennaëlle C. Monnot
Christopher L. Ricupero
Rebecca A. Mazur
Peter Gordon
Annemieke de Jong
Sunil Wadhwa
Michael T. Yin
Ryan T. Demmer
Anne-Catrin Uhlemann
author_sort Medini K. Annavajhala
title Oral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy
title_short Oral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy
title_full Oral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy
title_fullStr Oral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy
title_full_unstemmed Oral and Gut Microbial Diversity and Immune Regulation in Patients with HIV on Antiretroviral Therapy
title_sort oral and gut microbial diversity and immune regulation in patients with hiv on antiretroviral therapy
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/0cb9fe476054456491e7cf070fe89589
work_keys_str_mv AT medinikannavajhala oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT sabrinadkhan oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT seanbsullivan oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT jayeshshah oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT laurenpass oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT karolinakister oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT heatherkunen oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT victorchiang oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT gwennaellecmonnot oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT christopherlricupero oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT rebeccaamazur oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT petergordon oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT annemiekedejong oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT sunilwadhwa oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT michaeltyin oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT ryantdemmer oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
AT annecatrinuhlemann oralandgutmicrobialdiversityandimmuneregulationinpatientswithhivonantiretroviraltherapy
_version_ 1718427930398294016