Impact of interstitial impurities on the trapping of dislocation loops in tungsten
Abstract Ab initio simulations are employed to assess the interaction of typical interstitial impurities with self-interstitial atoms, dislocation loops and edge dislocation lines in tungsten. These impurities are present in commercial tungsten grades and are also created as a result of neutron tran...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0cc619ad3d234ae88143c0da9cd5047a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Ab initio simulations are employed to assess the interaction of typical interstitial impurities with self-interstitial atoms, dislocation loops and edge dislocation lines in tungsten. These impurities are present in commercial tungsten grades and are also created as a result of neutron transmutation or the plasma in-take process. The relevance of the study is determined by the application of tungsten as first wall material in fusion reactors. For the defects with dislocation character, the following ordering of the interaction strength was established: H < N < C < O < He. The magnitude of the interaction energy was rationalized by decomposing it into elastic (related to the lattice strain) and chemical (related to local electron density) contributions. To account for the combined effect of impurity concentration and pinning strength, the impact of the presence of these impurities on the mobility of isolated dislocation loops was studied for DEMO relevant conditions in the non-elastic and dilute limit. |
---|