MIDClass: microarray data classification by association rules and gene expression intervals.

We present a new classification method for expression profiling data, called MIDClass (Microarray Interval Discriminant CLASSifier), based on association rules. It classifies expressions profiles exploiting the idea that the transcript expression intervals better discriminate subtypes in the same cl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rosalba Giugno, Alfredo Pulvirenti, Luciano Cascione, Giuseppe Pigola, Alfredo Ferro
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0cd1e91cfba54377918dbcd95472aee5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0cd1e91cfba54377918dbcd95472aee5
record_format dspace
spelling oai:doaj.org-article:0cd1e91cfba54377918dbcd95472aee52021-11-18T09:01:02ZMIDClass: microarray data classification by association rules and gene expression intervals.1932-620310.1371/journal.pone.0069873https://doaj.org/article/0cd1e91cfba54377918dbcd95472aee52013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23936357/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203We present a new classification method for expression profiling data, called MIDClass (Microarray Interval Discriminant CLASSifier), based on association rules. It classifies expressions profiles exploiting the idea that the transcript expression intervals better discriminate subtypes in the same class. A wide experimental analysis shows the effectiveness of MIDClass compared to the most prominent classification approaches.Rosalba GiugnoAlfredo PulvirentiLuciano CascioneGiuseppe PigolaAlfredo FerroPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 8, p e69873 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Rosalba Giugno
Alfredo Pulvirenti
Luciano Cascione
Giuseppe Pigola
Alfredo Ferro
MIDClass: microarray data classification by association rules and gene expression intervals.
description We present a new classification method for expression profiling data, called MIDClass (Microarray Interval Discriminant CLASSifier), based on association rules. It classifies expressions profiles exploiting the idea that the transcript expression intervals better discriminate subtypes in the same class. A wide experimental analysis shows the effectiveness of MIDClass compared to the most prominent classification approaches.
format article
author Rosalba Giugno
Alfredo Pulvirenti
Luciano Cascione
Giuseppe Pigola
Alfredo Ferro
author_facet Rosalba Giugno
Alfredo Pulvirenti
Luciano Cascione
Giuseppe Pigola
Alfredo Ferro
author_sort Rosalba Giugno
title MIDClass: microarray data classification by association rules and gene expression intervals.
title_short MIDClass: microarray data classification by association rules and gene expression intervals.
title_full MIDClass: microarray data classification by association rules and gene expression intervals.
title_fullStr MIDClass: microarray data classification by association rules and gene expression intervals.
title_full_unstemmed MIDClass: microarray data classification by association rules and gene expression intervals.
title_sort midclass: microarray data classification by association rules and gene expression intervals.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/0cd1e91cfba54377918dbcd95472aee5
work_keys_str_mv AT rosalbagiugno midclassmicroarraydataclassificationbyassociationrulesandgeneexpressionintervals
AT alfredopulvirenti midclassmicroarraydataclassificationbyassociationrulesandgeneexpressionintervals
AT lucianocascione midclassmicroarraydataclassificationbyassociationrulesandgeneexpressionintervals
AT giuseppepigola midclassmicroarraydataclassificationbyassociationrulesandgeneexpressionintervals
AT alfredoferro midclassmicroarraydataclassificationbyassociationrulesandgeneexpressionintervals
_version_ 1718421005944225792