Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function

This paper addresses the global stability analysis of the SEIRS epidemic model with a nonlinear incidence rate function according to the Lyapunov functions and Volterra-Lyapunov matrices. By creating special conditions and using the properties of Volterra-Lyapunov matrices, it is possible to recogni...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Pengcheng Shao, Stanford Shateyi
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Accès en ligne:https://doaj.org/article/0ce7b48554fc4b70854141091bdb7ec0
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:This paper addresses the global stability analysis of the SEIRS epidemic model with a nonlinear incidence rate function according to the Lyapunov functions and Volterra-Lyapunov matrices. By creating special conditions and using the properties of Volterra-Lyapunov matrices, it is possible to recognize the stability of the endemic equilibrium (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>1</mn></msub></semantics></math></inline-formula>) for the SEIRS model. Numerical results are used to verify the presented analysis.