Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function
This paper addresses the global stability analysis of the SEIRS epidemic model with a nonlinear incidence rate function according to the Lyapunov functions and Volterra-Lyapunov matrices. By creating special conditions and using the properties of Volterra-Lyapunov matrices, it is possible to recogni...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ce7b48554fc4b70854141091bdb7ec0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0ce7b48554fc4b70854141091bdb7ec0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0ce7b48554fc4b70854141091bdb7ec02021-11-11T18:13:33ZStability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function10.3390/math92126442227-7390https://doaj.org/article/0ce7b48554fc4b70854141091bdb7ec02021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2644https://doaj.org/toc/2227-7390This paper addresses the global stability analysis of the SEIRS epidemic model with a nonlinear incidence rate function according to the Lyapunov functions and Volterra-Lyapunov matrices. By creating special conditions and using the properties of Volterra-Lyapunov matrices, it is possible to recognize the stability of the endemic equilibrium (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>1</mn></msub></semantics></math></inline-formula>) for the SEIRS model. Numerical results are used to verify the presented analysis.Pengcheng ShaoStanford ShateyiMDPI AGarticleglobal stabilitySEIRSdynamical systemsVolterra-Lyapunov stabilityMathematicsQA1-939ENMathematics, Vol 9, Iss 2644, p 2644 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
global stability SEIRS dynamical systems Volterra-Lyapunov stability Mathematics QA1-939 |
spellingShingle |
global stability SEIRS dynamical systems Volterra-Lyapunov stability Mathematics QA1-939 Pengcheng Shao Stanford Shateyi Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function |
description |
This paper addresses the global stability analysis of the SEIRS epidemic model with a nonlinear incidence rate function according to the Lyapunov functions and Volterra-Lyapunov matrices. By creating special conditions and using the properties of Volterra-Lyapunov matrices, it is possible to recognize the stability of the endemic equilibrium (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>1</mn></msub></semantics></math></inline-formula>) for the SEIRS model. Numerical results are used to verify the presented analysis. |
format |
article |
author |
Pengcheng Shao Stanford Shateyi |
author_facet |
Pengcheng Shao Stanford Shateyi |
author_sort |
Pengcheng Shao |
title |
Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function |
title_short |
Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function |
title_full |
Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function |
title_fullStr |
Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function |
title_full_unstemmed |
Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function |
title_sort |
stability analysis of seirs epidemic model with nonlinear incidence rate function |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/0ce7b48554fc4b70854141091bdb7ec0 |
work_keys_str_mv |
AT pengchengshao stabilityanalysisofseirsepidemicmodelwithnonlinearincidenceratefunction AT stanfordshateyi stabilityanalysisofseirsepidemicmodelwithnonlinearincidenceratefunction |
_version_ |
1718431865191268352 |