Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function

This paper addresses the global stability analysis of the SEIRS epidemic model with a nonlinear incidence rate function according to the Lyapunov functions and Volterra-Lyapunov matrices. By creating special conditions and using the properties of Volterra-Lyapunov matrices, it is possible to recogni...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pengcheng Shao, Stanford Shateyi
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/0ce7b48554fc4b70854141091bdb7ec0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0ce7b48554fc4b70854141091bdb7ec0
record_format dspace
spelling oai:doaj.org-article:0ce7b48554fc4b70854141091bdb7ec02021-11-11T18:13:33ZStability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function10.3390/math92126442227-7390https://doaj.org/article/0ce7b48554fc4b70854141091bdb7ec02021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2644https://doaj.org/toc/2227-7390This paper addresses the global stability analysis of the SEIRS epidemic model with a nonlinear incidence rate function according to the Lyapunov functions and Volterra-Lyapunov matrices. By creating special conditions and using the properties of Volterra-Lyapunov matrices, it is possible to recognize the stability of the endemic equilibrium (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>1</mn></msub></semantics></math></inline-formula>) for the SEIRS model. Numerical results are used to verify the presented analysis.Pengcheng ShaoStanford ShateyiMDPI AGarticleglobal stabilitySEIRSdynamical systemsVolterra-Lyapunov stabilityMathematicsQA1-939ENMathematics, Vol 9, Iss 2644, p 2644 (2021)
institution DOAJ
collection DOAJ
language EN
topic global stability
SEIRS
dynamical systems
Volterra-Lyapunov stability
Mathematics
QA1-939
spellingShingle global stability
SEIRS
dynamical systems
Volterra-Lyapunov stability
Mathematics
QA1-939
Pengcheng Shao
Stanford Shateyi
Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function
description This paper addresses the global stability analysis of the SEIRS epidemic model with a nonlinear incidence rate function according to the Lyapunov functions and Volterra-Lyapunov matrices. By creating special conditions and using the properties of Volterra-Lyapunov matrices, it is possible to recognize the stability of the endemic equilibrium (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>E</mi><mn>1</mn></msub></semantics></math></inline-formula>) for the SEIRS model. Numerical results are used to verify the presented analysis.
format article
author Pengcheng Shao
Stanford Shateyi
author_facet Pengcheng Shao
Stanford Shateyi
author_sort Pengcheng Shao
title Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function
title_short Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function
title_full Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function
title_fullStr Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function
title_full_unstemmed Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function
title_sort stability analysis of seirs epidemic model with nonlinear incidence rate function
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/0ce7b48554fc4b70854141091bdb7ec0
work_keys_str_mv AT pengchengshao stabilityanalysisofseirsepidemicmodelwithnonlinearincidenceratefunction
AT stanfordshateyi stabilityanalysisofseirsepidemicmodelwithnonlinearincidenceratefunction
_version_ 1718431865191268352