A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs

Pelvic radiographs (PXRs) are essential for detecting proximal femur and pelvis injuries in trauma patients, but none of the currently available algorithms can detect all kinds of trauma-related radiographic findings. Here, the authors develop a multiscale deep learning algorithm trained with weakly...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chi-Tung Cheng, Yirui Wang, Huan-Wu Chen, Po-Meng Hsiao, Chun-Nan Yeh, Chi-Hsun Hsieh, Shun Miao, Jing Xiao, Chien-Hung Liao, Le Lu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/0cec1461b6754f12909e65f96ea806a5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Pelvic radiographs (PXRs) are essential for detecting proximal femur and pelvis injuries in trauma patients, but none of the currently available algorithms can detect all kinds of trauma-related radiographic findings. Here, the authors develop a multiscale deep learning algorithm trained with weakly supervised point annotation.