A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
Pelvic radiographs (PXRs) are essential for detecting proximal femur and pelvis injuries in trauma patients, but none of the currently available algorithms can detect all kinds of trauma-related radiographic findings. Here, the authors develop a multiscale deep learning algorithm trained with weakly...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0cec1461b6754f12909e65f96ea806a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0cec1461b6754f12909e65f96ea806a5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0cec1461b6754f12909e65f96ea806a52021-12-02T10:52:47ZA scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs10.1038/s41467-021-21311-32041-1723https://doaj.org/article/0cec1461b6754f12909e65f96ea806a52021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21311-3https://doaj.org/toc/2041-1723Pelvic radiographs (PXRs) are essential for detecting proximal femur and pelvis injuries in trauma patients, but none of the currently available algorithms can detect all kinds of trauma-related radiographic findings. Here, the authors develop a multiscale deep learning algorithm trained with weakly supervised point annotation.Chi-Tung ChengYirui WangHuan-Wu ChenPo-Meng HsiaoChun-Nan YehChi-Hsun HsiehShun MiaoJing XiaoChien-Hung LiaoLe LuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Chi-Tung Cheng Yirui Wang Huan-Wu Chen Po-Meng Hsiao Chun-Nan Yeh Chi-Hsun Hsieh Shun Miao Jing Xiao Chien-Hung Liao Le Lu A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs |
description |
Pelvic radiographs (PXRs) are essential for detecting proximal femur and pelvis injuries in trauma patients, but none of the currently available algorithms can detect all kinds of trauma-related radiographic findings. Here, the authors develop a multiscale deep learning algorithm trained with weakly supervised point annotation. |
format |
article |
author |
Chi-Tung Cheng Yirui Wang Huan-Wu Chen Po-Meng Hsiao Chun-Nan Yeh Chi-Hsun Hsieh Shun Miao Jing Xiao Chien-Hung Liao Le Lu |
author_facet |
Chi-Tung Cheng Yirui Wang Huan-Wu Chen Po-Meng Hsiao Chun-Nan Yeh Chi-Hsun Hsieh Shun Miao Jing Xiao Chien-Hung Liao Le Lu |
author_sort |
Chi-Tung Cheng |
title |
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs |
title_short |
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs |
title_full |
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs |
title_fullStr |
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs |
title_full_unstemmed |
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs |
title_sort |
scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0cec1461b6754f12909e65f96ea806a5 |
work_keys_str_mv |
AT chitungcheng ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT yiruiwang ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT huanwuchen ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT pomenghsiao ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT chunnanyeh ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT chihsunhsieh ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT shunmiao ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT jingxiao ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT chienhungliao ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT lelu ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT chitungcheng scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT yiruiwang scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT huanwuchen scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT pomenghsiao scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT chunnanyeh scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT chihsunhsieh scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT shunmiao scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT jingxiao scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT chienhungliao scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs AT lelu scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs |
_version_ |
1718396511777193984 |