A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs

Pelvic radiographs (PXRs) are essential for detecting proximal femur and pelvis injuries in trauma patients, but none of the currently available algorithms can detect all kinds of trauma-related radiographic findings. Here, the authors develop a multiscale deep learning algorithm trained with weakly...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chi-Tung Cheng, Yirui Wang, Huan-Wu Chen, Po-Meng Hsiao, Chun-Nan Yeh, Chi-Hsun Hsieh, Shun Miao, Jing Xiao, Chien-Hung Liao, Le Lu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/0cec1461b6754f12909e65f96ea806a5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0cec1461b6754f12909e65f96ea806a5
record_format dspace
spelling oai:doaj.org-article:0cec1461b6754f12909e65f96ea806a52021-12-02T10:52:47ZA scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs10.1038/s41467-021-21311-32041-1723https://doaj.org/article/0cec1461b6754f12909e65f96ea806a52021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21311-3https://doaj.org/toc/2041-1723Pelvic radiographs (PXRs) are essential for detecting proximal femur and pelvis injuries in trauma patients, but none of the currently available algorithms can detect all kinds of trauma-related radiographic findings. Here, the authors develop a multiscale deep learning algorithm trained with weakly supervised point annotation.Chi-Tung ChengYirui WangHuan-Wu ChenPo-Meng HsiaoChun-Nan YehChi-Hsun HsiehShun MiaoJing XiaoChien-Hung LiaoLe LuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Chi-Tung Cheng
Yirui Wang
Huan-Wu Chen
Po-Meng Hsiao
Chun-Nan Yeh
Chi-Hsun Hsieh
Shun Miao
Jing Xiao
Chien-Hung Liao
Le Lu
A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
description Pelvic radiographs (PXRs) are essential for detecting proximal femur and pelvis injuries in trauma patients, but none of the currently available algorithms can detect all kinds of trauma-related radiographic findings. Here, the authors develop a multiscale deep learning algorithm trained with weakly supervised point annotation.
format article
author Chi-Tung Cheng
Yirui Wang
Huan-Wu Chen
Po-Meng Hsiao
Chun-Nan Yeh
Chi-Hsun Hsieh
Shun Miao
Jing Xiao
Chien-Hung Liao
Le Lu
author_facet Chi-Tung Cheng
Yirui Wang
Huan-Wu Chen
Po-Meng Hsiao
Chun-Nan Yeh
Chi-Hsun Hsieh
Shun Miao
Jing Xiao
Chien-Hung Liao
Le Lu
author_sort Chi-Tung Cheng
title A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
title_short A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
title_full A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
title_fullStr A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
title_full_unstemmed A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
title_sort scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0cec1461b6754f12909e65f96ea806a5
work_keys_str_mv AT chitungcheng ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT yiruiwang ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT huanwuchen ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT pomenghsiao ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT chunnanyeh ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT chihsunhsieh ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT shunmiao ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT jingxiao ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT chienhungliao ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT lelu ascalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT chitungcheng scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT yiruiwang scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT huanwuchen scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT pomenghsiao scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT chunnanyeh scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT chihsunhsieh scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT shunmiao scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT jingxiao scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT chienhungliao scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
AT lelu scalablephysicianleveldeeplearningalgorithmdetectsuniversaltraumaonpelvicradiographs
_version_ 1718396511777193984