A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs
Pelvic radiographs (PXRs) are essential for detecting proximal femur and pelvis injuries in trauma patients, but none of the currently available algorithms can detect all kinds of trauma-related radiographic findings. Here, the authors develop a multiscale deep learning algorithm trained with weakly...
Guardado en:
Autores principales: | Chi-Tung Cheng, Yirui Wang, Huan-Wu Chen, Po-Meng Hsiao, Chun-Nan Yeh, Chi-Hsun Hsieh, Shun Miao, Jing Xiao, Chien-Hung Liao, Le Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0cec1461b6754f12909e65f96ea806a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Current Diagnostic Accuracy on Free Peritoneal Fluid in Computed Tomography to Determinate the Necessity of Surgery in Blunt Bowel and Mesenteric Trauma—Systemic Review and Meta-Analysis
por: Szu-An Chen, et al.
Publicado: (2021) -
Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs
por: Yu-Cheng Yeh, et al.
Publicado: (2021) -
Morphometric, Anatomic and Radiographic Study of Bone of the Pelvic Limb of Endangered Patagonian Huemul Deer (Hippocamelus bisulcus)
por: Salinas,Paulo, et al.
Publicado: (2020) -
Childhood trauma and dissociation among women with genito-pelvic pain/penetration disorder
por: Özen B, et al.
Publicado: (2018) -
The Feasibility and Efficiency of Remote Spirometry System on the Pulmonary Function for Multiple Ribs Fracture Patients
por: Chien-An Liao, et al.
Publicado: (2021)