Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture
Brain tumor segmentation seeks to separate healthy tissue from tumorous regions. This is an essential step in diagnosis and treatment planning to maximize the likelihood of successful treatment. Magnetic resonance imaging (MRI) provides detailed information about brain tumor anatomy, making it an im...
Guardado en:
Autores principales: | Anuja Arora, Ambikesh Jayal, Mayank Gupta, Prakhar Mittal, Suresh Chandra Satapathy |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0ced71a1adad4606a45463ea5d442eda |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MH UNet: A Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation
por: Parvez Ahmad, et al.
Publicado: (2021) -
Automatic Segmentation of Supraspinatus Muscle via Bone-Based Localization in Torso Computed Tomography Images Using U-Net
por: Yuichi Wakamatsu, et al.
Publicado: (2021) -
A Modular U-Net for Automated Segmentation of X-Ray Tomography Images in Composite Materials
por: João P. C. Bertoldo, et al.
Publicado: (2021) -
A study of generalization and compatibility performance of 3D U-Net segmentation on multiple heterogeneous liver CT datasets
por: Baochun He, et al.
Publicado: (2021) -
Central Object Segmentation by Deep Learning to Continuously Monitor Fruit Growth through RGB Images
por: Motohisa Fukuda, et al.
Publicado: (2021)