New novel thermal insulation and sound-absorbing materials from discarded facemasks of COVID-19 pandemic

Abstract Due to the COVID-19 pandemic, people were encouraged and sometimes required to wear disposable facemasks, which then are discarded creating an environmental problem. In this study, we aim at investigating novel ideas to recycle wasted facemasks in order to lower the environmental impact. An...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Ali, R. Almuzaiqer, K. Al-Salem, A. Alabdulkarem, A. Nuhait
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0cef0a6e90854eafab5226f726e53629
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0cef0a6e90854eafab5226f726e53629
record_format dspace
spelling oai:doaj.org-article:0cef0a6e90854eafab5226f726e536292021-12-05T12:15:40ZNew novel thermal insulation and sound-absorbing materials from discarded facemasks of COVID-19 pandemic10.1038/s41598-021-02744-82045-2322https://doaj.org/article/0cef0a6e90854eafab5226f726e536292021-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02744-8https://doaj.org/toc/2045-2322Abstract Due to the COVID-19 pandemic, people were encouraged and sometimes required to wear disposable facemasks, which then are discarded creating an environmental problem. In this study, we aim at investigating novel ideas to recycle wasted facemasks in order to lower the environmental impact. An experimental study has been carried out to investigate the possibility of using discarded masks for thermal insulation and sound absorption. The wasted masks are simulated by new masks, which stripped off the nose clips, elastic ear loops and are heated to 120 °C for one hour to kill any biological contaminants. The masks are also melted to investigate their thermal insulation and sound absorption properties. Results show that the thermal conductivity coefficients of the loose and melted masks are 0.03555 and 0.08683 W/m K, respectively, at room temperature of about 25 °C. Results show also that the sound absorption coefficient for loose masks is above 0.6 for the frequency range 600–5000 Hz. The loose facemasks are found to be thermally stable up to 295 °C, elastic ear loops at 304.7 °C, and the composite (melted) facemasks at 330.0 °C using the thermo-gravimetric analysis. Characterization of the facemask’s three-layer fibers and the composite (melted) samples is obtained using scanning electron microscopy (SEM). The three-point bending test is obtained for the composite specimens showing good values of flexural stress, flexural strain, and flexural elastic modulus. These results are promising about using such discarded masks as new thermal insulation and sound-absorbing materials for buildings replacing the synthetic or petrochemical insulation materials.M. AliR. AlmuzaiqerK. Al-SalemA. AlabdulkaremA. NuhaitNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
M. Ali
R. Almuzaiqer
K. Al-Salem
A. Alabdulkarem
A. Nuhait
New novel thermal insulation and sound-absorbing materials from discarded facemasks of COVID-19 pandemic
description Abstract Due to the COVID-19 pandemic, people were encouraged and sometimes required to wear disposable facemasks, which then are discarded creating an environmental problem. In this study, we aim at investigating novel ideas to recycle wasted facemasks in order to lower the environmental impact. An experimental study has been carried out to investigate the possibility of using discarded masks for thermal insulation and sound absorption. The wasted masks are simulated by new masks, which stripped off the nose clips, elastic ear loops and are heated to 120 °C for one hour to kill any biological contaminants. The masks are also melted to investigate their thermal insulation and sound absorption properties. Results show that the thermal conductivity coefficients of the loose and melted masks are 0.03555 and 0.08683 W/m K, respectively, at room temperature of about 25 °C. Results show also that the sound absorption coefficient for loose masks is above 0.6 for the frequency range 600–5000 Hz. The loose facemasks are found to be thermally stable up to 295 °C, elastic ear loops at 304.7 °C, and the composite (melted) facemasks at 330.0 °C using the thermo-gravimetric analysis. Characterization of the facemask’s three-layer fibers and the composite (melted) samples is obtained using scanning electron microscopy (SEM). The three-point bending test is obtained for the composite specimens showing good values of flexural stress, flexural strain, and flexural elastic modulus. These results are promising about using such discarded masks as new thermal insulation and sound-absorbing materials for buildings replacing the synthetic or petrochemical insulation materials.
format article
author M. Ali
R. Almuzaiqer
K. Al-Salem
A. Alabdulkarem
A. Nuhait
author_facet M. Ali
R. Almuzaiqer
K. Al-Salem
A. Alabdulkarem
A. Nuhait
author_sort M. Ali
title New novel thermal insulation and sound-absorbing materials from discarded facemasks of COVID-19 pandemic
title_short New novel thermal insulation and sound-absorbing materials from discarded facemasks of COVID-19 pandemic
title_full New novel thermal insulation and sound-absorbing materials from discarded facemasks of COVID-19 pandemic
title_fullStr New novel thermal insulation and sound-absorbing materials from discarded facemasks of COVID-19 pandemic
title_full_unstemmed New novel thermal insulation and sound-absorbing materials from discarded facemasks of COVID-19 pandemic
title_sort new novel thermal insulation and sound-absorbing materials from discarded facemasks of covid-19 pandemic
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0cef0a6e90854eafab5226f726e53629
work_keys_str_mv AT mali newnovelthermalinsulationandsoundabsorbingmaterialsfromdiscardedfacemasksofcovid19pandemic
AT ralmuzaiqer newnovelthermalinsulationandsoundabsorbingmaterialsfromdiscardedfacemasksofcovid19pandemic
AT kalsalem newnovelthermalinsulationandsoundabsorbingmaterialsfromdiscardedfacemasksofcovid19pandemic
AT aalabdulkarem newnovelthermalinsulationandsoundabsorbingmaterialsfromdiscardedfacemasksofcovid19pandemic
AT anuhait newnovelthermalinsulationandsoundabsorbingmaterialsfromdiscardedfacemasksofcovid19pandemic
_version_ 1718372057557762048