Flood Risk Mapping by Remote Sensing Data and Random Forest Technique
Detecting effective parameters in flood occurrence is one of the most important issues that has drawn more attention in recent years. Remote Sensing (RS) and Geographical Information System (GIS) are two efficient ways to spatially predict Flood Risk Mapping (FRM). In this study, a web-based platfor...
Guardado en:
Autores principales: | Hadi Farhadi, Mohammad Najafzadeh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d00f2a867d643ef88b8d41b2a2994e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Alternative to Laboratory Testing: Random Forest-Based Water Quality Prediction Framework for Inland and Nearshore Water Bodies
por: Jianlong Xu, et al.
Publicado: (2021) -
Social Influences on Flood Preparedness and Mitigation Measures Adopted by People Living with Flood Risk
por: Donald Houston, et al.
Publicado: (2021) -
Water Quality Index (WQI) as a Potential Proxy for Remote Sensing Evaluation of Water Quality in Arid Areas
por: Fei Zhang, et al.
Publicado: (2021) -
Community Flood Impacts and Infrastructure: Examining National Flood Impacts Using a High Precision Assessment Tool in the United States
por: Jeremy R. Porter, et al.
Publicado: (2021) -
Assessing the Vulnerability of Agricultural Systems to Drought in Kyrgyzstan
por: Li Liang, et al.
Publicado: (2021)