Quantitative Analyses Reveal Novel Roles for <italic toggle="yes">N-</italic>Glycosylation in a Major Enteric Bacterial Pathogen
ABSTRACT In eukaryotes, glycosylation plays a role in proteome stability, protein quality control, and modulating protein function; however, similar studies in bacteria are lacking. Here, we investigate the roles of general protein glycosylation systems in bacteria using the enteropathogen Campyloba...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d0372c0457a437f9746456acb366609 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0d0372c0457a437f9746456acb366609 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0d0372c0457a437f9746456acb3666092021-11-15T15:55:25ZQuantitative Analyses Reveal Novel Roles for <italic toggle="yes">N-</italic>Glycosylation in a Major Enteric Bacterial Pathogen10.1128/mBio.00297-192150-7511https://doaj.org/article/0d0372c0457a437f9746456acb3666092019-04-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00297-19https://doaj.org/toc/2150-7511ABSTRACT In eukaryotes, glycosylation plays a role in proteome stability, protein quality control, and modulating protein function; however, similar studies in bacteria are lacking. Here, we investigate the roles of general protein glycosylation systems in bacteria using the enteropathogen Campylobacter jejuni as a well-defined example. By using a quantitative proteomic strategy, we were able to monitor changes in the C. jejuni proteome when glycosylation is disrupted. We demonstrate that in C. jejuni, N-glycosylation is essential to maintain proteome stability and protein quality control. These findings guided us to investigate the role of N-glycosylation in modulating bacterial cellular activities. In glycosylation-deficient C. jejuni, the multidrug efflux pump and electron transport pathways were significantly impaired. We demonstrate that in vivo, fully glycosylation-deficient C. jejuni bacteria were unable to colonize its natural avian host. These results provide the first evidence of a link between proteome stability and complex functions via a bacterial general glycosylation system. IMPORTANCE Advances in genomics and mass spectrometry have revealed several types of glycosylation systems in bacteria. However, why bacterial proteins are modified remains poorly defined. Here, we investigated the role of general N-linked glycosylation in a major food poisoning bacterium, Campylobacter jejuni. The aim of this study is to delineate the direct and indirect effects caused by disrupting this posttranslational modification. To achieve this, we employed a quantitative proteomic strategy to monitor alterations in the C. jejuni proteome. Our quantitative proteomic results linked general protein N-glycosylation to maintaining proteome stability. Functional analyses revealed novel roles for bacterial N-glycosylation in modulating multidrug efflux pump, enhancing nitrate reduction activity, and promoting host-microbe interaction. This work provides insights on the importance of general glycosylation in proteins in maintaining bacterial physiology, thus expanding our knowledge of the emergence of posttranslational modification in bacteria.Sherif AbouelhadidSimon J. NorthPaul HitchenPrerna VohraCosmin Chintoan-UtaMark StevensAnne DellJon CuccuiBrendan W. WrenAmerican Society for Microbiologyarticleglycosylationhost-microbe interactionmicrobial physiologypathogenesisproteomicsMicrobiologyQR1-502ENmBio, Vol 10, Iss 2 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
glycosylation host-microbe interaction microbial physiology pathogenesis proteomics Microbiology QR1-502 |
spellingShingle |
glycosylation host-microbe interaction microbial physiology pathogenesis proteomics Microbiology QR1-502 Sherif Abouelhadid Simon J. North Paul Hitchen Prerna Vohra Cosmin Chintoan-Uta Mark Stevens Anne Dell Jon Cuccui Brendan W. Wren Quantitative Analyses Reveal Novel Roles for <italic toggle="yes">N-</italic>Glycosylation in a Major Enteric Bacterial Pathogen |
description |
ABSTRACT In eukaryotes, glycosylation plays a role in proteome stability, protein quality control, and modulating protein function; however, similar studies in bacteria are lacking. Here, we investigate the roles of general protein glycosylation systems in bacteria using the enteropathogen Campylobacter jejuni as a well-defined example. By using a quantitative proteomic strategy, we were able to monitor changes in the C. jejuni proteome when glycosylation is disrupted. We demonstrate that in C. jejuni, N-glycosylation is essential to maintain proteome stability and protein quality control. These findings guided us to investigate the role of N-glycosylation in modulating bacterial cellular activities. In glycosylation-deficient C. jejuni, the multidrug efflux pump and electron transport pathways were significantly impaired. We demonstrate that in vivo, fully glycosylation-deficient C. jejuni bacteria were unable to colonize its natural avian host. These results provide the first evidence of a link between proteome stability and complex functions via a bacterial general glycosylation system. IMPORTANCE Advances in genomics and mass spectrometry have revealed several types of glycosylation systems in bacteria. However, why bacterial proteins are modified remains poorly defined. Here, we investigated the role of general N-linked glycosylation in a major food poisoning bacterium, Campylobacter jejuni. The aim of this study is to delineate the direct and indirect effects caused by disrupting this posttranslational modification. To achieve this, we employed a quantitative proteomic strategy to monitor alterations in the C. jejuni proteome. Our quantitative proteomic results linked general protein N-glycosylation to maintaining proteome stability. Functional analyses revealed novel roles for bacterial N-glycosylation in modulating multidrug efflux pump, enhancing nitrate reduction activity, and promoting host-microbe interaction. This work provides insights on the importance of general glycosylation in proteins in maintaining bacterial physiology, thus expanding our knowledge of the emergence of posttranslational modification in bacteria. |
format |
article |
author |
Sherif Abouelhadid Simon J. North Paul Hitchen Prerna Vohra Cosmin Chintoan-Uta Mark Stevens Anne Dell Jon Cuccui Brendan W. Wren |
author_facet |
Sherif Abouelhadid Simon J. North Paul Hitchen Prerna Vohra Cosmin Chintoan-Uta Mark Stevens Anne Dell Jon Cuccui Brendan W. Wren |
author_sort |
Sherif Abouelhadid |
title |
Quantitative Analyses Reveal Novel Roles for <italic toggle="yes">N-</italic>Glycosylation in a Major Enteric Bacterial Pathogen |
title_short |
Quantitative Analyses Reveal Novel Roles for <italic toggle="yes">N-</italic>Glycosylation in a Major Enteric Bacterial Pathogen |
title_full |
Quantitative Analyses Reveal Novel Roles for <italic toggle="yes">N-</italic>Glycosylation in a Major Enteric Bacterial Pathogen |
title_fullStr |
Quantitative Analyses Reveal Novel Roles for <italic toggle="yes">N-</italic>Glycosylation in a Major Enteric Bacterial Pathogen |
title_full_unstemmed |
Quantitative Analyses Reveal Novel Roles for <italic toggle="yes">N-</italic>Glycosylation in a Major Enteric Bacterial Pathogen |
title_sort |
quantitative analyses reveal novel roles for <italic toggle="yes">n-</italic>glycosylation in a major enteric bacterial pathogen |
publisher |
American Society for Microbiology |
publishDate |
2019 |
url |
https://doaj.org/article/0d0372c0457a437f9746456acb366609 |
work_keys_str_mv |
AT sherifabouelhadid quantitativeanalysesrevealnovelrolesforitalictoggleyesnitalicglycosylationinamajorentericbacterialpathogen AT simonjnorth quantitativeanalysesrevealnovelrolesforitalictoggleyesnitalicglycosylationinamajorentericbacterialpathogen AT paulhitchen quantitativeanalysesrevealnovelrolesforitalictoggleyesnitalicglycosylationinamajorentericbacterialpathogen AT prernavohra quantitativeanalysesrevealnovelrolesforitalictoggleyesnitalicglycosylationinamajorentericbacterialpathogen AT cosminchintoanuta quantitativeanalysesrevealnovelrolesforitalictoggleyesnitalicglycosylationinamajorentericbacterialpathogen AT markstevens quantitativeanalysesrevealnovelrolesforitalictoggleyesnitalicglycosylationinamajorentericbacterialpathogen AT annedell quantitativeanalysesrevealnovelrolesforitalictoggleyesnitalicglycosylationinamajorentericbacterialpathogen AT joncuccui quantitativeanalysesrevealnovelrolesforitalictoggleyesnitalicglycosylationinamajorentericbacterialpathogen AT brendanwwren quantitativeanalysesrevealnovelrolesforitalictoggleyesnitalicglycosylationinamajorentericbacterialpathogen |
_version_ |
1718427133807689728 |