Stability of SARS-CoV-2 on critical personal protective equipment

Abstract The spread of COVID-19 in healthcare settings is concerning, with healthcare workers representing a disproportionately high percentage of confirmed cases. Although SARS-CoV-2 virus has been found to persist on surfaces for a number of days, the extent and duration of fomites as a mode of tr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Samantha B. Kasloff, Anders Leung, James E. Strong, Duane Funk, Todd Cutts
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0d14e3d4949746728e9eb5557ec26c54
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The spread of COVID-19 in healthcare settings is concerning, with healthcare workers representing a disproportionately high percentage of confirmed cases. Although SARS-CoV-2 virus has been found to persist on surfaces for a number of days, the extent and duration of fomites as a mode of transmission, particularly in healthcare settings, has not been fully characterized. To shed light on this critical matter, the present study provides the first comprehensive assessment of SARS-CoV-2 stability on experimentally contaminated personal protective equipment (PPE) widely used by healthcare workers and the general public. Persistence of viable virus was monitored over 21 days on eight different materials, including nitrile medical examination gloves, reinforced chemical resistant gloves, N-95 and N-100 particulate respirator masks, Tyvek, plastic, cotton, and stainless steel. Unlike previous reports, viable SARS-CoV-2 in the presence of a soil load persisted for up to 21 days on experimentally inoculated PPE, including materials from filtering facepiece respirators (N-95 and N-100 masks) and a plastic visor. Conversely, when applied to 100% cotton fabric, the virus underwent rapid degradation and became undetectable by TCID50 assay within 24 h. These findings underline the importance of appropriate handling of contaminated PPE during and following use in high-risk settings and provide interesting insight into the potential utility of cotton in limiting COVID-19 transmission.