Analysis and Optimal Control of <i>φ</i>-Hilfer Fractional Semilinear Equations Involving Nonlocal Impulsive Conditions
The goal of this paper is to consider a new class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula>-Hilfer fractional differential equation...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d2546c344b8434590f73fafade732cd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The goal of this paper is to consider a new class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula>-Hilfer fractional differential equations with impulses and nonlocal conditions. By using fractional calculus, semigroup theory, and with the help of the fixed point theorem, the existence and uniqueness of mild solutions are obtained for the proposed fractional system. Symmetrically, we discuss the existence of optimal controls for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula>-Hilfer fractional control system. Our main results are well supported by an illustrative example. |
---|