Analysis and Optimal Control of <i>φ</i>-Hilfer Fractional Semilinear Equations Involving Nonlocal Impulsive Conditions

The goal of this paper is to consider a new class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula>-Hilfer fractional differential equation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sarra Guechi, Rajesh Dhayal, Amar Debbouche, Muslim Malik
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/0d2546c344b8434590f73fafade732cd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The goal of this paper is to consider a new class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula>-Hilfer fractional differential equations with impulses and nonlocal conditions. By using fractional calculus, semigroup theory, and with the help of the fixed point theorem, the existence and uniqueness of mild solutions are obtained for the proposed fractional system. Symmetrically, we discuss the existence of optimal controls for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>φ</mi></semantics></math></inline-formula>-Hilfer fractional control system. Our main results are well supported by an illustrative example.