Upconversion Modulation through Pulsed Laser Excitation for Anti-counterfeiting

Abstract Lanthanide-doped upconversion nanomaterials are emerging as promising candidates in optoelectronics, volumetric display, anti-counterfeiting as well as biological imaging and therapy. Typical modulations of upconversion through chemical methods, such as controlling phase, composition, morph...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yingdong Han, Hongyu Li, Yangbo Wang, Yue Pan, Ling Huang, Feng Song, Wei Huang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/0d29b1b1f617430f8a18e14fc3668c5b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Lanthanide-doped upconversion nanomaterials are emerging as promising candidates in optoelectronics, volumetric display, anti-counterfeiting as well as biological imaging and therapy. Typical modulations of upconversion through chemical methods, such as controlling phase, composition, morphology and size enable us to rationally manipulate emission profiles and lifetimes of lanthanide ions by using continuous-wave laser excitation. Here we demonstrate that under pulsed laser excitation the emission color of NaYF4:Er/Tm (2/0.5%)@NaYF4 core-shell nanoparticles has an obvious transformation from green to red colors. Moreover, both pulse duration and repetition frequency are responsible for manipulating the upconversion emission color. The mechanism of the phenomena may be that the pulsed laser sequence triggers the emission levels to non-steady upconversion states first, and then cuts off the unfinished population process within the pulse duration. This pump source dependent and resultant tunable fluorescence emission enables NaYF4:Er/Tm (2/0.5%)@NaYF4 nanoparticles as a promising fluorophore in the transparent anti-fake printing.