Identification of crystal symmetry from noisy diffraction patterns by a shape analysis and deep learning
Abstract The robust and automated determination of crystal symmetry is of utmost importance in material characterization and analysis. Recent studies have shown that deep learning (DL) methods can effectively reveal the correlations between X-ray or electron-beam diffraction patterns and crystal sym...
Guardado en:
Autores principales: | Leslie Ching Ow Tiong, Jeongrae Kim, Sang Soo Han, Donghun Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d364a8f4eba4550813da789ef5c508a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparing crystal structures with symmetry and geometry
por: John C. Thomas, et al.
Publicado: (2021) -
Deep learning for visualization and novelty detection in large X-ray diffraction datasets
por: Lars Banko, et al.
Publicado: (2021) -
A convolutional neural network for defect classification in Bragg coherent X-ray diffraction
por: Bruce Lim, et al.
Publicado: (2021) -
Symmetry-aware recursive image similarity exploration for materials microscopy
por: Tri N. M. Nguyen, et al.
Publicado: (2021) -
High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts
por: Byung Chul Yeo, et al.
Publicado: (2021)