A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration

<p>Climate change is reshaping vulnerable ecosystems, leading to uncertain effects on ecosystem dynamics, including evapotranspiration (ET) and ecosystem respiration (<span class="inline-formula"><i>R</i><sub>eco</sub></span>). However, accurate es...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: J. Chen, B. Dafflon, A. P. Tran, N. Falco, S. S. Hubbard
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
T
G
Acceso en línea:https://doaj.org/article/0d3aabba789948d6bab8d4dbcfe62560
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0d3aabba789948d6bab8d4dbcfe62560
record_format dspace
spelling oai:doaj.org-article:0d3aabba789948d6bab8d4dbcfe625602021-11-25T10:45:18ZA deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration10.5194/hess-25-6041-20211027-56061607-7938https://doaj.org/article/0d3aabba789948d6bab8d4dbcfe625602021-11-01T00:00:00Zhttps://hess.copernicus.org/articles/25/6041/2021/hess-25-6041-2021.pdfhttps://doaj.org/toc/1027-5606https://doaj.org/toc/1607-7938<p>Climate change is reshaping vulnerable ecosystems, leading to uncertain effects on ecosystem dynamics, including evapotranspiration (ET) and ecosystem respiration (<span class="inline-formula"><i>R</i><sub>eco</sub></span>). However, accurate estimation of ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> still remains challenging at sparsely monitored watersheds, where data and field instrumentation are limited. In this study, we developed a hybrid predictive modeling approach (HPM) that integrates eddy covariance measurements, physically based model simulation results, meteorological forcings, and remote-sensing datasets to estimate ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> in high space–time resolution. HPM relies on a deep learning algorithm and long short-term memory (LSTM) and requires only air temperature, precipitation, radiation, normalized difference vegetation index (NDVI), and soil temperature (when available) as input variables. We tested and validated HPM estimation results in different climate regions and developed four use cases to demonstrate the applicability and variability of HPM at various FLUXNET sites and Rocky Mountain SNOTEL sites in Western North America. To test the limitations and performance of the HPM approach in mountainous watersheds, an expanded use case focused on the East River Watershed, Colorado, USA. The results indicate HPM is capable of identifying complicated interactions among meteorological forcings, ET, and <span class="inline-formula"><i>R</i><sub>eco</sub></span> variables, as well as providing reliable estimation of ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> across relevant spatiotemporal scales, even in challenging mountainous systems. The study documents that HPM increases our capability to estimate ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> and enhances process understanding at sparsely monitored watersheds.</p>J. ChenB. DafflonA. P. TranA. P. TranN. FalcoS. S. HubbardCopernicus PublicationsarticleTechnologyTEnvironmental technology. Sanitary engineeringTD1-1066Geography. Anthropology. RecreationGEnvironmental sciencesGE1-350ENHydrology and Earth System Sciences, Vol 25, Pp 6041-6066 (2021)
institution DOAJ
collection DOAJ
language EN
topic Technology
T
Environmental technology. Sanitary engineering
TD1-1066
Geography. Anthropology. Recreation
G
Environmental sciences
GE1-350
spellingShingle Technology
T
Environmental technology. Sanitary engineering
TD1-1066
Geography. Anthropology. Recreation
G
Environmental sciences
GE1-350
J. Chen
B. Dafflon
A. P. Tran
A. P. Tran
N. Falco
S. S. Hubbard
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
description <p>Climate change is reshaping vulnerable ecosystems, leading to uncertain effects on ecosystem dynamics, including evapotranspiration (ET) and ecosystem respiration (<span class="inline-formula"><i>R</i><sub>eco</sub></span>). However, accurate estimation of ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> still remains challenging at sparsely monitored watersheds, where data and field instrumentation are limited. In this study, we developed a hybrid predictive modeling approach (HPM) that integrates eddy covariance measurements, physically based model simulation results, meteorological forcings, and remote-sensing datasets to estimate ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> in high space–time resolution. HPM relies on a deep learning algorithm and long short-term memory (LSTM) and requires only air temperature, precipitation, radiation, normalized difference vegetation index (NDVI), and soil temperature (when available) as input variables. We tested and validated HPM estimation results in different climate regions and developed four use cases to demonstrate the applicability and variability of HPM at various FLUXNET sites and Rocky Mountain SNOTEL sites in Western North America. To test the limitations and performance of the HPM approach in mountainous watersheds, an expanded use case focused on the East River Watershed, Colorado, USA. The results indicate HPM is capable of identifying complicated interactions among meteorological forcings, ET, and <span class="inline-formula"><i>R</i><sub>eco</sub></span> variables, as well as providing reliable estimation of ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> across relevant spatiotemporal scales, even in challenging mountainous systems. The study documents that HPM increases our capability to estimate ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> and enhances process understanding at sparsely monitored watersheds.</p>
format article
author J. Chen
B. Dafflon
A. P. Tran
A. P. Tran
N. Falco
S. S. Hubbard
author_facet J. Chen
B. Dafflon
A. P. Tran
A. P. Tran
N. Falco
S. S. Hubbard
author_sort J. Chen
title A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
title_short A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
title_full A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
title_fullStr A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
title_full_unstemmed A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
title_sort deep learning hybrid predictive modeling (hpm) approach for estimating evapotranspiration and ecosystem respiration
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/0d3aabba789948d6bab8d4dbcfe62560
work_keys_str_mv AT jchen adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT bdafflon adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT aptran adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT aptran adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT nfalco adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT sshubbard adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT jchen deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT bdafflon deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT aptran deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT aptran deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT nfalco deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
AT sshubbard deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration
_version_ 1718413541140070400