A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
<p>Climate change is reshaping vulnerable ecosystems, leading to uncertain effects on ecosystem dynamics, including evapotranspiration (ET) and ecosystem respiration (<span class="inline-formula"><i>R</i><sub>eco</sub></span>). However, accurate es...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d3aabba789948d6bab8d4dbcfe62560 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0d3aabba789948d6bab8d4dbcfe62560 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0d3aabba789948d6bab8d4dbcfe625602021-11-25T10:45:18ZA deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration10.5194/hess-25-6041-20211027-56061607-7938https://doaj.org/article/0d3aabba789948d6bab8d4dbcfe625602021-11-01T00:00:00Zhttps://hess.copernicus.org/articles/25/6041/2021/hess-25-6041-2021.pdfhttps://doaj.org/toc/1027-5606https://doaj.org/toc/1607-7938<p>Climate change is reshaping vulnerable ecosystems, leading to uncertain effects on ecosystem dynamics, including evapotranspiration (ET) and ecosystem respiration (<span class="inline-formula"><i>R</i><sub>eco</sub></span>). However, accurate estimation of ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> still remains challenging at sparsely monitored watersheds, where data and field instrumentation are limited. In this study, we developed a hybrid predictive modeling approach (HPM) that integrates eddy covariance measurements, physically based model simulation results, meteorological forcings, and remote-sensing datasets to estimate ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> in high space–time resolution. HPM relies on a deep learning algorithm and long short-term memory (LSTM) and requires only air temperature, precipitation, radiation, normalized difference vegetation index (NDVI), and soil temperature (when available) as input variables. We tested and validated HPM estimation results in different climate regions and developed four use cases to demonstrate the applicability and variability of HPM at various FLUXNET sites and Rocky Mountain SNOTEL sites in Western North America. To test the limitations and performance of the HPM approach in mountainous watersheds, an expanded use case focused on the East River Watershed, Colorado, USA. The results indicate HPM is capable of identifying complicated interactions among meteorological forcings, ET, and <span class="inline-formula"><i>R</i><sub>eco</sub></span> variables, as well as providing reliable estimation of ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> across relevant spatiotemporal scales, even in challenging mountainous systems. The study documents that HPM increases our capability to estimate ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> and enhances process understanding at sparsely monitored watersheds.</p>J. ChenB. DafflonA. P. TranA. P. TranN. FalcoS. S. HubbardCopernicus PublicationsarticleTechnologyTEnvironmental technology. Sanitary engineeringTD1-1066Geography. Anthropology. RecreationGEnvironmental sciencesGE1-350ENHydrology and Earth System Sciences, Vol 25, Pp 6041-6066 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Technology T Environmental technology. Sanitary engineering TD1-1066 Geography. Anthropology. Recreation G Environmental sciences GE1-350 |
spellingShingle |
Technology T Environmental technology. Sanitary engineering TD1-1066 Geography. Anthropology. Recreation G Environmental sciences GE1-350 J. Chen B. Dafflon A. P. Tran A. P. Tran N. Falco S. S. Hubbard A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration |
description |
<p>Climate change is reshaping vulnerable ecosystems, leading to
uncertain effects on ecosystem dynamics, including evapotranspiration (ET)
and ecosystem respiration (<span class="inline-formula"><i>R</i><sub>eco</sub></span>). However, accurate estimation of ET
and <span class="inline-formula"><i>R</i><sub>eco</sub></span> still remains challenging at sparsely monitored watersheds,
where data and field instrumentation are limited. In this study, we
developed a hybrid predictive modeling approach (HPM) that integrates eddy
covariance measurements, physically based model simulation results,
meteorological forcings, and remote-sensing datasets to estimate ET and
<span class="inline-formula"><i>R</i><sub>eco</sub></span> in high space–time resolution. HPM relies on a deep learning
algorithm and long short-term memory (LSTM) and requires only air temperature,
precipitation, radiation, normalized difference vegetation index (NDVI), and
soil temperature (when available) as input variables. We tested and
validated HPM estimation results in different climate regions and developed
four use cases to demonstrate the applicability and variability of HPM at
various FLUXNET sites and Rocky Mountain SNOTEL sites in Western North
America. To test the limitations and performance of the HPM approach in mountainous
watersheds, an expanded use case focused on the East River Watershed,
Colorado, USA. The results indicate HPM is capable of identifying
complicated interactions among meteorological forcings, ET, and <span class="inline-formula"><i>R</i><sub>eco</sub></span>
variables, as well as providing reliable estimation of ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span>
across relevant spatiotemporal scales, even in challenging mountainous
systems. The study documents that HPM increases our capability to estimate
ET and <span class="inline-formula"><i>R</i><sub>eco</sub></span> and enhances process understanding at sparsely monitored
watersheds.</p> |
format |
article |
author |
J. Chen B. Dafflon A. P. Tran A. P. Tran N. Falco S. S. Hubbard |
author_facet |
J. Chen B. Dafflon A. P. Tran A. P. Tran N. Falco S. S. Hubbard |
author_sort |
J. Chen |
title |
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration |
title_short |
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration |
title_full |
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration |
title_fullStr |
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration |
title_full_unstemmed |
A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration |
title_sort |
deep learning hybrid predictive modeling (hpm) approach for estimating evapotranspiration and ecosystem respiration |
publisher |
Copernicus Publications |
publishDate |
2021 |
url |
https://doaj.org/article/0d3aabba789948d6bab8d4dbcfe62560 |
work_keys_str_mv |
AT jchen adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT bdafflon adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT aptran adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT aptran adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT nfalco adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT sshubbard adeeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT jchen deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT bdafflon deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT aptran deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT aptran deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT nfalco deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration AT sshubbard deeplearninghybridpredictivemodelinghpmapproachforestimatingevapotranspirationandecosystemrespiration |
_version_ |
1718413541140070400 |