A deep learning hybrid predictive modeling (HPM) approach for estimating evapotranspiration and ecosystem respiration
<p>Climate change is reshaping vulnerable ecosystems, leading to uncertain effects on ecosystem dynamics, including evapotranspiration (ET) and ecosystem respiration (<span class="inline-formula"><i>R</i><sub>eco</sub></span>). However, accurate es...
Guardado en:
Autores principales: | J. Chen, B. Dafflon, A. P. Tran, N. Falco, S. S. Hubbard |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0d3aabba789948d6bab8d4dbcfe62560 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Design flood estimation for global river networks based on machine learning models
por: G. Zhao, et al.
Publicado: (2021) -
Response of water fluxes and biomass production to climate change in permanent grassland soil ecosystems
por: V. Forstner, et al.
Publicado: (2021) -
Evapotranspiration and Runoff Patterns Across California's Sierra Nevada
por: Joseph Rungee, et al.
Publicado: (2021) -
Drought detection in Java Island based on Standardized Precipitation and Evapotranspiration Index (SPEI)
por: Suroso, et al.
Publicado: (2021) -
On the selection of precipitation products for the regionalisation of hydrological model parameters
por: O. M. Baez-Villanueva, et al.
Publicado: (2021)